0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrostatic Interpretation of Phase Separation Induced by Femtosecond Laser Light in Glass

      , ,
      Crystals
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous studies on the effect of the femtosecond laser pulses in oxide glasses have been achieved over the last two decades, and several specific effects pointed out. Some of them are classical with respect to a laser treatment, such as thermally related effects, and are widely taken into account for applications. Other effects are directly induced by light, caused by its intricated spatiotemporal structure and associated properties: ponderomotive and polarization effects or coherence within the focal volume. These effects enable the development of forces that can lead to orientation effects. Among the specific resulting transformations from the light-induced effects in glass, the formation of so-called nanogratings was first pointed out in 2003 in silica glass. From this date, asymmetric organization into parallel nanoplanes, perpendicular to the laser polarization, have been found in many vitreous and crystalline compounds. While it is accepted that they arise from the same origin, i.e., a plasma organization that is eventually imprinted inside the material, uncertainties remain on the formation process itself. Indeed, since it exists several categories of nanogratings based on the final structuring (nanoporous phase separation, crystallization, and nanocracks), it can be expected that several processes are at the roots of such spectacular organization. This paper describes an approach based on electrochemical potential modified by an electronic excitation. The electric field induced during this process is first calculated, with a maximum of ~4500 kV/µm and a distribution confined within the lamella period. The maximal chemical potential variation is thus calculated, in the studied conditions, to be in the kJ/mol range, corresponding to a glass-to-crystal phase transition energy release. The kinetics aspect of species mobility is subsequently described, strengthening the proposed approach.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses

          Periodic nanostructures are observed inside silica glass after irradiation by a focused beam of a femtosecond Ti:sapphire laser. Backscattering electron images of the irradiated spot reveal a periodic structure of stripelike regions of approximately 20 nm width with a low oxygen concentration, which are aligned perpendicular to the laser polarization direction. These are the smallest embedded structures ever created by light. The period of self-organized grating structures can be controlled from approximately 140 to 320 nm by the pulse energy and the number of irradiated pulses. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of the bulk electron plasma wave, resulting in the periodic modulation of electron plasma concentration and the structural changes in glass.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interspecimen Comparison of the Refractive Index of Fused Silica*,†

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optically produced arrays of planar nanostructures inside fused silica.

              Linearly polarized femtosecond light pulses, focused inside fused silica to an intensity that leads to multiphoton ionization, produce arrayed planes of modified material having their normal parallel to the laser polarization. The planes are < or = 10 nm thick and are spaced at approximately lambda/2 in the medium for free space wavelengths of both 800 and 400 nm. By slowly scanning the sample under a fixed laser focus, order is maintained over macroscopic distances for all angles between the polarization and scan direction. With the laser polarization parallel to the scan direction we produce long-range Bragg-like gratings. We discuss how local field enhancement influences dielectric ionization, describe how this leads to nanoplane growth, why the planes are arrayed, and how long-range order is maintained.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CRYSBC
                Crystals
                Crystals
                MDPI AG
                2073-4352
                March 2023
                February 24 2023
                : 13
                : 3
                : 393
                Article
                10.3390/cryst13030393
                63961280-4818-417f-87f1-b4c79206957f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article