7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Erythropoietin and Friedreich Ataxia: Time for a Reappraisal?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Friedreich ataxia (FRDA) is a rare neurological disorder due to deficiency of the mitochondrial protein frataxin. Frataxin deficiency results in impaired mitochondrial function and iron deposition in affected tissues. Erythropoietin (EPO) is a cytokine which was mostly known as a key regulator of erythropoiesis until cumulative evidence showed additional neurotrophic and neuroprotective properties. These features offered the rationale for advancement of EPO in clinical trials in different neurological disorders in the past years, including FRDA. Several mechanisms of action of EPO may be beneficial in FRDA. First of all, EPO exposure results in frataxin upregulation in vitro and in vivo. By promoting erythropoiesis, EPO influences iron metabolism and induces shifts in iron pool which may ameliorate conditions of free iron excess and iron accumulation. Furthermore, EPO signaling is crucial for mitochondrial gene activation and mitochondrial biogenesis. Up to date nine clinical trials investigated the effects of EPO and derivatives in FRDA. The majority of these studies had a proof-of-concept design. Considering the natural history of FRDA, all of them were too short in duration and not powered for clinical changes. However, these studies addressed significant issues in the treatment with EPO, such as (1) the challenge of the dose finding, (2) stability of frataxin up-regulation, (3) continuous versus intermittent stimulation with EPO/regimen, or (4) tissue changes after EPO exposure in humans in vivo (muscle biopsy, brain imaging). Despite several clinical trials in the past, no treatment is available for the treatment of FRDA. Current lines of research focus on gene therapy, frataxin replacement strategies and on regulation of key metabolic checkpoints such as NrF2. Due to potential crosstalk with all these mechanisms, interventions on the EPO pathway still represent a valuable research field. The recent development of small EPO mimetics which maintain cytoprotective properties without erythropoietic action may open a new era in EPO research for the treatment of FRDA.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia.

          Friedreich ataxia (FRDA) is a common autosomal recessive degenerative disease (1/50,000 live births) characterized by a progressive-gait and limb ataxia with lack of tendon reflexes in the legs, dysarthria and pyramidal weakness of the inferior limbs. Hypertrophic cardiomyopathy is observed in most FRDA patients. The gene associated with the disease has been mapped to chromosome 9q13 (ref. 3) and encodes a 210-amino-acid protein, frataxin. FRDA is caused primarily by a GAA repeat expansion within the first intron of the frataxin gene, which accounts for 98% of mutant alleles. The function of the protein is unknown, but an increased iron content has been reported in hearts of FRDA patients and in mitochondria of yeast strains carrying a deleted frataxin gene counterpart (YFH1), suggesting that frataxin plays a major role in regulating mitochondrial iron transport. Here, we report a deficient activity of the iron-sulphur (Fe-S) cluster-containing subunits of mitochondrial respiratory complexes I, II and III in the endomyocardial biopsy of two unrelated FRDA patients. Aconitase, an iron-sulphur protein involved in iron homeostasis, was found to be deficient as well. Moreover, disruption of the YFH1 gene resulted in multiple Fe-S-dependent enzyme deficiencies in yeast. The deficiency of Fe-S-dependent enzyme activities in both FRDA patients and yeast should be related to mitochondrial iron accumulation, especially as Fe-S proteins are remarkably sensitive to free radicals. Mutated frataxin triggers aconitase and mitochondrial Fe-S respiratory enzyme deficiency in FRDA, which should therefore be regarded as a mitochondrial disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Derivatives of erythropoietin that are tissue protective but not erythropoietic.

            Erythropoietin (EPO) is both hematopoietic and tissue protective, putatively through interaction with different receptors. We generated receptor subtype-selective ligands allowing the separation of EPO's bioactivities at the cellular level and in animals. Carbamylated EPO (CEPO) or certain EPO mutants did not bind to the classical EPO receptor (EPOR) and did not show any hematopoietic activity in human cell signaling assays or upon chronic dosing in different animal species. Nevertheless, CEPO and various nonhematopoietic mutants were cytoprotective in vitro and conferred neuroprotection against stroke, spinal cord compression, diabetic neuropathy, and experimental autoimmune encephalomyelitis at a potency and efficacy comparable to EPO.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats.

              Erythropoietin (EPO) promotes proliferation and differentiation of erythroid progenitors and the survival of maturing erythroid cells. Here, we investigated the role of EPO in brain repair after stroke. Rats were treated with recombinant human EPO (rhEPO) at 24 hours after the onset of embolic stroke. An array of behavior tests was performed. Rats were euthanized 28 days after stroke for measurements of infarct volume, angiogenesis, and neurogenesis. In vitro, neurospheres derived from the subventricular zone (SVZ) of the rat and cerebral endothelial cells derived from the mouse were treated with rhEPO. Capillary-like tube formation and neuronal differentiation were measured. Treatment with rhEPO significantly improved functional recovery, along with increases in density of cerebral microvessels at the stroke boundary and numbers of BrdU, doublecortin, and nestin immunoreactive cells in the SVZ. rhEPO treatment significantly increased brain levels of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). In vitro, rhEPO enhanced capillary tube formation of cerebral endothelial cells, which was inhibited by a specific VEGF receptor 2 antagonist (SU1498). Incubation of neurospheres derived from stroke SVZ with anti-EPO neutralizing antibody inhibited neurogenesis, whereas incubation of stroke-derived neurospheres with rhEPO enhanced neurogenesis. Our data suggest that EPO-increased VEGF and BDNF may be involved in angiogenesis and neurogenesis, which could contribute to functional recovery.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                24 April 2019
                2019
                : 13
                : 386
                Affiliations
                Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
                Author notes

                Edited by: Alberto Lazarowski, Universidad de Buenos Aires, Argentina

                Reviewed by: Michael Huang, The University of Sydney, Australia; Raffaella Gozzelino, Center for Chronic Disease Studies, Portugal; Monika Praschberger, Medical University of Vienna, Austria

                *Correspondence: Sylvia Boesch, sylvia.boesch@ 123456i-med.ac.at

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.00386
                6491891
                6418bfd9-cb14-4a45-ae8f-07db365f101b
                Copyright © 2019 Boesch and Indelicato.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 January 2019
                : 04 April 2019
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 144, Pages: 11, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                erythropoietin,friedreich ataxia,clinical trials,frataxin,iron,mitochondria
                Neurosciences
                erythropoietin, friedreich ataxia, clinical trials, frataxin, iron, mitochondria

                Comments

                Comment on this article