7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring growth rate and geometry with anisotropic clustering

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Accelerating Universes with Scaling Dark Matter

          Friedmann-Robertson-Walker universes with a presently large fraction of the energy density stored in an \(X\)-component with \(w_X<-1/3\), are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different \(w_X\) values. Using a simple toy model with a varying equation of state, we show that even a large variation of \(w_X\) at small redshifts is very difficult to observe with \(d_L(z)\) measurements up to \(z\sim 1\). Therefore, it will require accurate measurements in the range \(1
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant

            We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a Baryon Acoustic Oscillation (BAO) signal. The 6dFGS BAO detection allows us to constrain the distance-redshift relation at z_{\rm eff} = 0.106. We achieve a distance measure of D_V(z_{\rm eff}) = 456\pm27 Mpc and a measurement of the distance ratio, r_s(z_d)/D_V(z_{\rm eff}) = 0.336\pm0.015 (4.5% precision), where r_s(z_d) is the sound horizon at the drag epoch z_d. The low effective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H_0 = 67\pm3.2 km s^{-1} Mpc^{-1} (4.8% precision) that depends only on the WMAP-7 calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H_0 can be used to break the degeneracy between the dark energy equation of state parameter w and H_0 in the CMB data. We determine that w = -0.97\pm0.13, using only WMAP-7 and BAO data from both 6dFGS and \citet{Percival:2009xn}. We also discuss predictions for the large scale correlation function of two future wide-angle surveys: the WALLABY blind H{\sc I} survey (with the Australian SKA Pathfinder, ASKAP), and the proposed TAIPAN all-southern-sky optical galaxy survey with the UK Schmidt Telescope (UKST). We find that both surveys are very likely to yield detections of the BAO peak, making WALLABY the first radio galaxy survey to do so. We also predict that TAIPAN has the potential to constrain the Hubble constant with 3% precision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

              We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focussing on the extension of the vanilla \(\Lambda\)CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software, which is fully parallelized using MPI and includes an interface to CosmoMC, is available at http://www.mrao.cam.ac.uk/software/multinest/. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at http://www.superbayes.org
                Bookmark

                Author and article information

                Journal
                Monthly Notices of the Royal Astronomical Society
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                March 22 2014
                February 27 2014
                : 439
                : 4
                : 3504-3519
                Article
                10.1093/mnras/stu197
                6424bdeb-e9d2-4ca1-a7bf-4fb280a13ee2
                © 2014
                History

                Comments

                Comment on this article