8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei.

      The Journal of Comparative Neurology
      Acoustic Stimulation, Afferent Pathways, anatomy & histology, physiology, Animals, Auditory Threshold, Brain Mapping, Cats, Cell Size, Cochlear Nerve, Databases, Factual, Neural Conduction, Vestibular Nuclei, Vestibulocochlear Nerve

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Response properties of auditory nerve fibers (ANFs), including threshold sensitivity, vary systematically with spontaneous discharge rate (SR) (Liberman, M.C.: J. Acoust. Soc Amer. 63:442-455, 1978). Thus, an understanding of the mechanisms underlying signal transformation in the cochlear nucleus (CN) must include a description of any SR-based difference in ANF projections. This study is the second of a pair describing the CN projections of intracellularly labeled ANFs of known SR, the first of which summarized projection to the anteroventral CN (Liberman, M.C.: J. Comp. Neurol. 313:240-258, 1991). For each swelling from each labeled fiber, the position (within CN subdivisions), the size, and the type of cell contacted (if determinable) was noted: roughly one in four labeled swellings appeared in intimate contact with the soma or proximal dendrites of a CN cell. In all such cases, cell size and swelling size were measured. As reported for auteroventral cochlear nucleus, the ANF innervation of the small-cell regions of posteroventral CN (PVCN) was almost exclusively by low- and medium-SR fibers. Other significant SR-based trends in ANF projections included 1) a tendency for high-SR fibers to contact larger cells in PVCN, 2) a meager projection of low- and medium-SR fibers to octopus cells, and 3) a tendency in the dorsal CN (DCN) for low-SR terminals to end closer to the fusiform cell layer than high-SR terminals. There were no significant SR-based difference in ANF swelling sizes in any subdivision. A consideration of the average cell sizes, ANF swelling sizes and estimated numbers of ANFs of different CF and SR converging on each CN cell help explain some of the differences in response transformation associated with different cell types in the CN.

          Related collections

          Author and article information

          Comments

          Comment on this article