24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes

      , , , ,
      Astronomy & Astrophysics
      EDP Sciences

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star

          While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and transport in accretion systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

            We review the observed demographics and inferred evolution of supermassive black holes (BHs) found by dynamical modeling of spatially resolved kinematics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion of the host-galaxy bulge. It and other correlations led to the belief that BHs and bulges coevolve by regulating each other's growth. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. BHs are found in pure-disk galaxies, so classical (elliptical-galaxy-like) bulges are not necessary to grow BHs. But BHs do not correlate with galaxy disks. And any correlations with disk-grown pseudobulges or halo dark matter are so weak as to imply no close coevolution. We suggest that there are four regimes of BH feedback. 1- Local, stochastic feeding of small BHs in mainly bulgeless galaxies involves too little energy to result in coevolution. 2- Global feeding in major, wet galaxy mergers grows giant BHs in short, quasar-like "AGN" events whose feedback does affect galaxies. This makes classical bulges and coreless-rotating ellipticals. 3- At the highest BH masses, maintenance-mode feedback into X-ray gas has the negative effect of helping to keep baryons locked up in hot gas. This happens in giant, core-nonrotating ellipticals. They inherit coevolution magic from smaller progenitors. 4- Independent of any feedback physics, the averaging that results from successive mergers helps to engineer tight BH correlations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Physics of Gamma-Ray Bursts

              Tsvi Piran (2004)
              Gamma-Ray Bursts (GRBs), short and intense pulses of low energy gamma-rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. During the last decade, several space missions: BATSE (Burst and Transient Source Experiment) on Compton Gamma-Ray Observatory, BeppoSAX and now HETE II (High-Energy Transient Explorer), together with ground optical, infrared and radio observatories have revolutionized our understanding of GRBs showing that they are cosmological, that they are accompanied by long lasting afterglows and that they are associated with core collapse Supernovae. At the same time a theoretical understanding has emerged in the form of the fireball internal-external shocks model. According to this model GRBs are produced when the kinetic energy of an ultra-relativistic flow is dissipated in internal collisions. The afterglow arises when the flow is slowed down by shocks with the surrounding circum-burst matter. This model has numerous successful predictions like the prediction of the afterglow itself, the prediction of jet breaks in the afterglow light curve and of an optical flash that accompanies the GRBs themselves. In this review I focus on theoretical aspects and on physical processes believed to take place in GRBs.
                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                August 2018
                September 11 2018
                August 2018
                : 616
                : A179
                Article
                10.1051/0004-6361/201732392
                64452dc5-06d2-4ea3-8b91-101653a72876
                © 2018
                History

                Comments

                Comment on this article