27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst™)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To report our initial clinical experience with the novel surface imaging system Catalyst™ (C-RAD AB, Sweden) in connection with an Elekta Synergy linear accelerator for daily patient positioning in patients undergoing radiation therapy.

          Methods

          We retrospectively analyzed the patient positioning of 154 fractions in 25 patients applied to thoracic, abdominal, and pelvic body regions. Patients were routinely positioned based on skin marks, shifted to the calculated isocenter position and treated after correction via cone beam CT which served as gold standard. Prior to CBCT an additional surface scan by the Catalyst™ system was performed and compared to a reference surface image cropped from the planning CT to obtain shift vectors for an optimal surface match. These shift vectors were subtracted from the vectors obtained by CBCT correction to assess the theoretical setup error that would have occurred if the patients had been positioned using solely the Catalyst™ system. The mean theoretical set up-error and its standard deviation were calculated for all measured fractions and the results were compared to patient positioning based on skin marks only.

          Results

          Integration of the surface scan into the clinical workflow did not result in a significant time delay. Regarding the entire group, the mean setup error by using skin marks only was 0.0 ± 2.1 mm in lateral, −0.4 ± 2.4 mm in longitudinal, and 1.1 ± 2.6 mm vertical direction. The mean theoretical setup error that would have occurred using solely the Catalyst™ was −0.1 ± 2.1 mm laterally, −1.8 ± 5.4 mm longitudinally, and 1.4 ± 3.2 mm vertically. No significant difference was found in any direction. For thoracic targets the mean setup error based on the Catalyst™ was 0.6 ± 2.6 mm laterally, −5.0 ± 7.9 mm longitudinally, and 0.5 ± 3.2 mm vertically. For abdominal targets, the mean setup error was 0.3 ± 2.2 mm laterally, 2.6 ± 1.8 mm longitudinally, and 2.1 ± 5.5 mm vertically. For pelvic targets, the setup error was −0.9 ± 1.5 mm laterally, −1.7 ± 2.8 mm longitudinally, and 1.6 ± 2.2 mm vertically. A significant difference between Catalyst™ and skin mark based positioning was only observed in longitudinal direction of pelvic targets.

          Conclusion

          Optical surface scanning using Catalyst™ seems potentially useful for daily positioning at least to complement usual imaging modalities in most patients with acceptable accuracy, although a significant improvement compared to skin mark based positioning could not be derived from the evaluated data. However, this effect seemed to be rather caused by the unexpected high accuracy of skin mark based positioning than by inaccuracy using the Catalyst™. Further on, surface registration in longitudinal axis seemed less reliable especially in pelvic localization. Therefore further prospective evaluation based on strictly predefined protocols is needed to determine the optimal scanning approaches and parameters.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Image-guided radiotherapy: rationale, benefits, and limitations.

          Technological advances have greatly enhanced the specialty of radiation oncology by allowing more healthy tissue to be spared for the same or better tumour coverage. Developments in medical imaging are integral to radiation oncology, both for design of treatment plans and to localise the target for precise administration of radiation. At planning, definition of the tumour and healthy tissue is based on CT, augmented frequently with MRI and PET. At treatment, three-dimensional soft-tissue imaging can also be used to localise the target and tumour motion can be tracked with fluoroscopic imaging of radio-opaque markers implanted in or near the tumour. These developments allow changes in tumour position, size, and shape that take place during radiotherapy to be measured and accounted for to boost geometric accuracy and precision of radiation delivery. Image-guided treatment also enhances uniformity in doses administered in a population of patients, thus improving our ability to measure the effect of dosimetric and non-dosimetric factors on tumour and healthy tissue outcomes in clinical trials. Increased precision and accuracy of radiotherapy are expected to augment tumour control, reduce incidence and severity of toxic effects after radiotherapy, and facilitate development of more efficient shorter schedules than currently available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel surface imaging system for patient positioning and surveillance during radiotherapy. A phantom study and clinical evaluation.

            The use of optical surface positioning to support or replace X-ray-based image-guided radiotherapy (IGRT) may reduce patient exposure to extra dose. In specifically designed phantom tests, we analyzed the potential of a new scanning device preclinically. The system's clinical performance was evaluated in comparison to cone-beam computed tomography (CBCT) in a prospective study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cone beam computed tomography guidance for setup of patients receiving accelerated partial breast irradiation.

              To evaluate the role of cone-beam CT (CBCT) guidance for setup error reduction and soft tissue visualization in accelerated partial breast irradiation (APBI). Twenty patients were recruited for the delivery of radiotherapy to the postoperative cavity (3850 cGy in 10 fractions over 5 days) using an APBI technique. Cone-beam CT data sets were acquired after an initial skin-mark setup and before treatment delivery. These were registered online using the ipsilateral lung and external contours. Corrections were executed for translations exceeding 3 mm. The random and systematic errors associated with setup using skin-marks and setup using CBCT guidance were calculated and compared. A total of 315 CBCT data sets were analyzed. The systematic errors for the skin-mark setup were 2.7, 1.7, and 2.4 mm in the right-left, anterior-posterior, and superior-inferior directions, respectively. These were reduced to 0.8, 0.7, and 0.8 mm when CBCT guidance was used. The random errors were reduced from 2.4, 2.2, and 2.9 mm for skin-marks to 1.5, 1.5, and 1.6 mm for CBCT guidance in the right-left, anterior-posterior, and superior-inferior directions, respectively. A skin-mark setup for APBI patients is sufficient for current planning target volume margins for the population of patients studied here. Online CBCT guidance minimizes the occurrence of large random deviations, which may have a greater impact for the accelerated fractionation schedule used in APBI. It is also likely to permit a reduction in planning target volume margins and provide skin-line visualization and dosimetric evaluation of cardiac and lung volumes.
                Bookmark

                Author and article information

                Contributors
                +49-89440073770 , Franziska.Walter@med.uni-muenchen.de
                Philipp.Freislederer@med.uni-muenchen.de
                Claus.Belka@med.uni-muenchen.de
                Christian.Heinz@med.uni-muenchen.de
                Matthias.Soehn@med.uni-muenchen.de
                Falk.Roeder@med.uni-muenchen.de
                Journal
                Radiat Oncol
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central (London )
                1748-717X
                24 November 2016
                24 November 2016
                2016
                : 11
                : 154
                Affiliations
                [1 ]Department of Radiation Oncology, University Hospital of LMU Munich, Marchioninistr 15, 81377, Munich, Germany
                [2 ]Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
                Author information
                http://orcid.org/0000-0001-7912-322X
                Article
                728
                10.1186/s13014-016-0728-1
                5122202
                27881158
                644e2e18-6b14-48b8-8a69-963aac019607
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 August 2016
                : 15 November 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002669, Elekta;
                Funded by: C-RAD
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Oncology & Radiotherapy
                optical surface scanning,catalyst,patient positioning,cone-beam computed tomography

                Comments

                Comment on this article