2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of the Compressive Strength of Vibrocentrifuged Concrete Using Machine Learning Methods

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The determination of mechanical properties for different building materials is a highly relevant and practical field of application for machine learning (ML) techniques within the construction sector. When working with vibrocentrifuged concrete products and structures, it is crucial to consider factors related to the impact of aggressive environments. Artificial intelligence methods can enhance the prediction of vibrocentrifuged concrete properties through the use of specialized machine learning algorithms for materials’ strength determination. The aim of this article is to establish and evaluate machine learning algorithms, specifically Linear Regression (LR), Support Vector Regression (SVR), Random Forest (RF), CatBoost (CB), for the prediction of compressive strength in vibrocentrifuged concrete under diverse aggressive operational conditions. This is achieved by utilizing a comprehensive database of experimental values obtained in laboratory settings. The following metrics were used to analyze the accuracy of the constructed regression models: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root-Mean-Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and coefficient of determination (R2). The average MAPE in the range from 2% (RF, CB) to 7% (LR, SVR) allowed us to draw conclusions about the possibility of using “smart” algorithms in the development of compositions and quality control of vibrocentrifuged concrete, which ultimately entails the improvement and acceleration of the construction and building materials manufacture. The best model, CatBoost, showed MAE = 0.89, MSE = 4.37, RMSE = 2.09, MAPE = 2% and R2 = 0.94.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          A tutorial on support vector regression

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Optuna : A Next-generation Hyperparameter Optimization Framework

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC)

              Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BUILCO
                Buildings
                Buildings
                MDPI AG
                2075-5309
                February 2024
                February 01 2024
                : 14
                : 2
                : 377
                Article
                10.3390/buildings14020377
                645ab7b5-c82e-47e8-8459-3acf193c9f0b
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article