7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Accelerating invasion potential of disease vector Aedes aegypti under climate change

          Vector-borne diseases remain a major contributor to the global burden of disease, while climate change is expected to exacerbate their risk. Characterising vector development rate and its spatio-temporal variation under climate change is central to assessing the changing basis of human disease risk. We develop a mechanistic phenology model and apply it to Aedes aegypti, an invasive mosquito vector for arboviruses (e.g. dengue, zika and yellow fever). The model predicts the number of life-cycle completions (LCC) for a given location per unit time based on empirically derived biophysical responses to environmental conditions. Results suggest that the world became ~1.5% more suitable per decade for the development of Ae. aegypti during 1950–2000, while this trend is predicted to accelerate to 3.2–4.4% per decade by 2050. Invasion fronts in North America and China are projected to accelerate from ~2 to 6 km/yr by 2050. An increase in peak LCC combined with extended periods suitable for mosquito development is simulated to accelerate the vector’s global invasion potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States

            Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. Methods: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact.     Results: Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti.     Discussion: Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012.

              West Nile virus (WNV) is a leading cause of mosquito-borne disease in the United States. Annual seasonal outbreaks vary in size and location. Predicting where and when higher than normal WNV transmission will occur can help direct limited public health resources. We developed models for the contiguous United States to identify meteorological anomalies associated with above average incidence of WNV neuroinvasive disease from 2004 to 2012. We used county-level WNV data reported to ArboNET and meteorological data from the North American Land Data Assimilation System. As a result of geographic differences in WNV transmission, we divided the United States into East and West, and 10 climate regions. Above average annual temperature was associated with increased likelihood of higher than normal WNV disease incidence, nationally and in most regions. Lower than average annual total precipitation was associated with higher disease incidence in the eastern United States, but the opposite was true in most western regions. Although multiple factors influence WNV transmission, these findings show that anomalies in temperature and precipitation are associated with above average WNV disease incidence. Readily accessible meteorological data may be used to develop predictive models to forecast geographic areas with elevated WNV disease risk before the coming season.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Global Change Biology
                Glob Change Biol
                Wiley
                1354-1013
                1365-2486
                March 17 2021
                Affiliations
                [1 ]U.S. Geological Survey Lafayette LA USA
                [2 ]Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute St. Petersburg FL USA
                [3 ]U.S. Geological Survey Gainesville FL USA
                [4 ]University of Arizona Tucson AZ USA
                [5 ]U.S. Geological Survey Davie FL USA
                [6 ]University of California Berkeley CA USA
                [7 ]Louisiana State University Baton Rouge LA USA
                [8 ]U.S. Geological Survey Raleigh NC USA
                [9 ]Herndon Solutions Group, LLC NASA Environmental and Medical Contract, Mail Code: NEM‐022 Kennedy Space Center FL USA
                [10 ]University of British Columbia Vancouver BC Canada
                [11 ]University of California Santa Cruz CA USA
                [12 ]Bonefish and Tarpon Trust Marathon FL USA
                [13 ]National Oceanic and Atmospheric Administration La Jolla CA USA
                Article
                10.1111/gcb.15563
                33605004
                65041c2c-2f03-4bcb-9560-7437bbfecbaf
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article