Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electroconvulsive therapy (ECT) has been widely used to treat the major depressive disorder (MDD), especially for treatment-resistant depression. However, the neuroanatomical basis of ECT remains an open problem. In our study, we combined the voxel-based morphology (VBM), resting-state functional connectivity (RSFC) and granger causality analysis (GCA) to identify the longitudinal changes of structure and function in 23 MDD patients before and after ECT. In addition, multivariate pattern analysis using linear support vector machine (SVM) was applied to classify 23 depressed patients from 25 gender, age and education matched healthy controls. VBM analysis revealed the increased gray matter volume of left superficial amygdala after ECT. The following RSFC and GCA analyses further identified the enhanced functional connectivity between left amygdala and left fusiform face area (FFA) and effective connectivity from FFA to amygdala after ECT, respectively. Moreover, SVM-based classification achieved an accuracy of 83.33%, a sensitivity of 82.61% and a specificity of 84% by leave-one-out cross-validation. Our findings indicated that ECT may facilitate the neurogenesis of amygdala and selectively enhance the feedforward cortical–subcortical connectivity from FFA to amygdala. This study may shed new light on the pathological mechanism of MDD and may provide the neuroanatomical basis for ECT.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          LIBSVM: A library for support vector machines

          LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conscious and unconscious emotional learning in the human amygdala.

            If subjects are shown an angry face as a target visual stimulus for less than forty milliseconds and are then immediately shown an expressionless mask, these subjects report seeing the mask but not the target. However, an aversively conditioned masked target can elicit an emotional response from subjects without being consciously perceived. Here we study the mechanism of this unconsciously mediated emotional learning. We measured neural activity in volunteer subjects who were presented with two angry faces, one of which, through previous classical conditioning, was associated with a burst of white noise. In half of the trials, the subjects' awareness of the angry faces was prevented by backward masking with a neutral face. A significant neural response was elicited in the right, but not left, amygdala to masked presentations of the conditioned angry face. Unmasked presentations of the same face produced enhanced neural activity in the left, but not right, amygdala. Our results indicate that, first, the human amygdala can discriminate between stimuli solely on the basis of their acquired behavioural significance, and second, this response is lateralized according to the subjects' level of awareness of the stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Response and habituation of the human amygdala during visual processing of facial expression.

              We measured amygdala activity in human volunteers during rapid visual presentations of fearful, happy, and neutral faces using functional magnetic resonance imaging (fMRI). The first experiment involved a fixed order of conditions both within and across runs, while the second one used a fully counterbalanced order in addition to a low level baseline of simple visual stimuli. In both experiments, the amygdala was preferentially activated in response to fearful versus neutral faces. In the counterbalanced experiment, the amygdala also responded preferentially to happy versus neutral faces, suggesting a possible generalized response to emotionally valenced stimuli. Rapid habituation effects were prominent in both experiments. Thus, the human amygdala responds preferentially to emotionally valenced faces and rapidly habituates to them.
                Bookmark

                Author and article information

                Journal
                Soc Cogn Affect Neurosci
                Soc Cogn Affect Neurosci
                scan
                Social Cognitive and Affective Neuroscience
                Oxford University Press
                1749-5016
                1749-5024
                December 2017
                28 August 2017
                28 August 2017
                : 12
                : 12
                : 1983-1992
                Affiliations
                Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
                Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, China,
                Anhui Mental Health Center, Hefei 230022, China,
                Beijing Key Laboratory of Learning and Cognition, School of Education, Capital Normal University, Beijing 100048, China
                Author notes

                Jiaojian Wang and Qiang Wei contributed equally to this work.

                [* ]Correspondence should be addressed to Yanghua Tian, Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, China. E-mail: ayfytyh@ 123456126.com .
                Article
                nsx100
                10.1093/scan/nsx100
                5716231
                28981882
                65550944-337b-4ad1-aed8-305e234941b6
                © The Author (2017). Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 17 January 2017
                : 17 May 2017
                : 17 August 2017
                Page count
                Pages: 10
                Funding
                Funded by: Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31500867, 81601187, 81671354 and 81471117
                Categories
                Original Articles

                Neurosciences
                major depressive disorder,ect,amygdala,fusiform face area,multivariate pattern analysis

                Comments

                Comment on this article