23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can EGFR-Tyrosine Kinase Inhibitors (TKI) Alone Without Talc Pleurodesis Prevent Recurrence of Malignant Pleural Effusion (MPE) in Lung Adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract: Background and Objective: Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are effective against lung adenocarcinoma. However, limited data is available assessing the effectiveness of EGFR-TKI use in preventing re-accumulation of MPE. To our knowledge, there is no literature on comparison of talc pleurodesis with EGFR-TKIs alone on re-accumulation of MPE in Asian population. We investigated if EGFR-TKI therapy for advanced lung adenocarcinoma with malignant pleural effusion (MPE) is also successful in preventing pleural fluid re-accumulation following initial drainage.

          Methods: An observational cohort study of patients with lung adenocarcinoma and MPE in the year 2012 was conducted.

          Results: 70 patients presented with MPE from lung adenocarcinoma. Fifty six underwent EGFR mutation testing of which 39 (69.6%) had activating EGFR mutation and 34 (87.1%) received TKI. 20 were managed by pleural fluid drainage only whereas 14 underwent talc pleurodesis following pleural fluid drainage. Time taken for the pleural effusion to re-accumulate in those with and without pleurodesis was 9.9 vs. 11.7 months, p=0.59 respectively. More patients (n=10, 25.6%) with activating EGFR mutation presented with complete opacification (white-out) of the hemithorax compared to none without activating EGFR mutation (p=0.02).

          Conclusion: In TKI eligible patients, early talc pleurodesis may not confer additional benefit in preventing re-accumulation of pleural effusion and may be reserved for non-adenocarcinoma histology, or EGFR negative adenocarcinoma. Complete opacification of the hemithorax on presentation may serve as an early radiographic signal of positive EGFR mutation status.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

          Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21.

            To evaluate the effect of KRAS and epidermal growth factor receptor (EGFR) genotype on the response to erlotinib treatment in the BR.21, placebo-controlled trial. We analyzed 206 tumors for KRAS mutation, 204 tumors for EGFR mutation, and 159 tumors for EGFR gene copy by fluorescent in situ hybridization (FISH). We reanalyzed EGFR deletion/mutation using two highly sensitive techniques that detect abnormalities in samples with 5% to 10% tumor cellularity. KRAS mutation was analyzed by direct sequencing. Thirty patients (15%) had KRAS mutations, 34 (17%) had EGFR exon 19 deletion or exon 21 L858R mutations, and 61 (38%) had high EGFR gene copy (FISH positive). Response rates were 10% for wild-type and 5% for mutant KRAS (P = .69), 7% for wild-type and 27% for mutant EGFR (P = .03), and 5% for EGFR FISH-negative and 21% for FISH-positive patients (P = .02). Significant survival benefit from erlotinib therapy was observed for patients with wild-type KRAS (hazard ratio [HR] = 0.69, P = .03) and EGFR FISH positivity (HR = 0.43, P = .004) but not for patients with mutant KRAS (HR = 1.67, P = .31), wild-type EGFR (HR = 0.74, P = .09), mutant EGFR (HR = 0.55, P = .12), and EGFR FISH negativity (HR = 0.80, P = .35). In multivariate analysis, only EGFR FISH-positive status was prognostic for poorer survival (P = .025) and predictive of differential survival benefit from erlotinib (P = .005). EGFR mutations and high copy number are predictive of response to erlotinib. EGFR FISH is the strongest prognostic marker and a significant predictive marker of differential survival benefit from erlotinib.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial.

              PURPOSE In the phase III INTEREST trial, 1,466 pretreated patients with advanced non-small cell lung cancer (NSCLC) were randomly assigned to receive gefitinib or docetaxel. As a preplanned analysis, we prospectively analyzed available tumor biopsies to investigate the relationship between biomarkers and clinical outcomes. METHODS Biomarkers included epidermal growth factor receptor (EGFR) copy number by fluorescent in situ hybridization (374 assessable samples), EGFR protein expression by immunohistochemistry (n = 380), and EGFR (n = 297) and KRAS (n = 275) mutations. Results For all biomarker subgroups analyzed, survival was similar for gefitinib and docetaxel, with no statistically significant differences between treatments and no significant treatment by biomarker status interaction tests. EGFR mutation-positive patients had longer progression-free survival (PFS; hazard ratio [HR], 0.16; 95% CI, 0.05 to 0.49; P = .001) and higher objective response rate (ORR; 42.1% v 21.1%; P = .04), and patients with high EGFR copy number had higher ORR (13.0% v 7.4%; P = .04) with gefitinib versus docetaxel. CONCLUSION These biomarkers do not appear to be predictive factors for differential survival between gefitinib and docetaxel in this setting of previously treated patients; however, subsequent treatments may have influenced the survival results. For secondary end points of PFS and ORR, some advantages for gefitinib over docetaxel were seen in EGFR mutation-positive and high EGFR copy number patients. There was no statistically significant difference between gefitinib and docetaxel in biomarker-negative patients. This suggests gefitinib can provide similar overall survival to docetaxel in patients across a broad range of clinical subgroups and that EGFR biomarkers such as mutation status may additionally identify which patients are likely to gain greatest PFS and ORR benefit from gefitinib.
                Bookmark

                Author and article information

                Journal
                Curr Drug Discov Technol
                Curr Drug Discov Technol
                CDDT
                Current Drug Discovery Technologies
                Bentham Science Publishers
                1570-1638
                1875-6220
                June 2016
                June 2016
                : 13
                : 2
                : 68-76
                Affiliations
                [1 ] Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433;
                [2 ]Johns Hopkins Singapore, Tan Tock Seng Hospital, Singapore 308433;
                [3 ]Lee Kong Chian School of Medicine, Nanyang Technological University,Singapore
                Author notes
                [* ]Address correspondence to this author at the Tan Tock Seng Hospital, Department of Respiratory and Critical Care Medicine, 11 Jalan Tan Tock Seng, Singapore 308433; Tel: +65 63573790; Fax: +65 63573087; E-mail: Akash_Verma@ 123456ttsh.com.sg ;
                Article
                CDDT-13-68
                10.2174/1570163813666160524142846
                4997927
                27216707
                655548b0-377d-435b-91e2-f4a6a7dd21c6
                © 2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode ), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                keywords: lung cancer,adenocarcinoma,pleural effusion,pleurodesis,epidermal growth factor receptor tyrosine kinase inhibitors

                Comments

                Comment on this article