6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Manganese‐Dioxide‐Coating‐Instructed Plasmonic Modulation of Gold Nanorods for Activatable Duplex‐Imaging‐Guided NIR‐II Photothermal‐Chemodynamic Therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions

            Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical (. OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions. Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of . OH generated. Notably, various strategies based on the Fenton reaction have been employed to enhance . OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview. Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2 -Based Nanoagent to Enhance Chemodynamic Therapy

              Chemodynamic therapy (CDT) utilizes iron-initiated Fenton chemistry to destroy tumor cells by converting endogenous H2 O2 into the highly toxic hydroxyl radical (. OH). There is a paucity of Fenton-like metal-based CDT agents. Intracellular glutathione (GSH) with . OH scavenging ability greatly reduces CDT efficacy. A self-reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton-like Mn2+ delivery and GSH depletion properties. In the presence of HCO3- , which is abundant in the physiological medium, Mn2+ exerts Fenton-like activity to generate . OH from H2 O2 . Upon uptake of MnO2 -coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+ , resulting in GSH depletion-enhanced CDT. This, together with the GSH-activated MRI contrast effect and dissociation of MnO2 , allows MS@MnO2 NPs to achieve MRI-monitored chemo-chemodynamic combination therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                April 2021
                March 2021
                April 2021
                : 33
                : 13
                : 2008540
                Affiliations
                [1 ]Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
                [2 ]Innovation Academy for Precision Measurement Science and Technology (APM) Chinese Academy of Sciences (CAS) Wuhan 430071 China
                Article
                10.1002/adma.202008540
                33645863
                657feda9-9cf5-4078-bda7-542b3fd60ac2
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article