Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Classification of topological phonons in linear mechanical metamaterials

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials.

          Related collections

          Author and article information

          Journal
          Proceedings of the National Academy of Sciences
          Proc Natl Acad Sci USA
          Proceedings of the National Academy of Sciences
          0027-8424
          1091-6490
          August 16 2016
          August 16 2016
          August 16 2016
          August 01 2016
          : 113
          : 33
          : E4767-E4775
          Article
          10.1073/pnas.1605462113
          4995942
          27482105
          660ec0ab-a777-48a2-84f9-469cc4ae8544
          © 2016
          History

          Comments

          Comment on this article