14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lattice QCD for Cosmology

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Big-Bang Nucleosynthesis

          A critical review is given of the current status of cosmological nucleosynthesis. In the framework of the Standard Model with 3 types of relativistic neutrinos, the baryon-to-photon ratio, \(\eta\), corresponding to the inferred primordial abundances of deuterium and helium-4 is consistent with the independent determination of \(\eta\) from observations of anisotropies in the cosmic microwave background. However the primordial abundance of lithium-7 inferred from observations is significantly below its expected value. Taking systematic uncertainties in the abundance estimates into account, there is overall concordance in the range \(\eta = (5.7-6.7)\times 10^{-10}\) at 95% CL (corresponding to a cosmological baryon density \(\Omega_B h^2 = 0.021 - 0.025\)). The D and He-4 abundances, when combined with the CMB determination of \(\eta\), provide the bound \(N_\nu=3.28 \pm 0.28\) on the effective number of neutrino species. Other constraints on new physics are discussed briefly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The order of the quantum chromodynamics transition predicted by the standard model of particle physics

            We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ab-initio Determination of Light Hadron Masses

              More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab-initio calculation of the masses of protons, neutrons and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega electronvolts are used to extrapolate to the physical point with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties.
                Bookmark

                Author and article information

                Journal
                2016-06-23
                2016-06-27
                Article
                1606.07494
                6634d387-d6ac-4c3b-b336-3f1c3004229b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                DESY 16-105
                pdflatex, 40 figures; Section on experimental setups added, small corrections
                hep-lat astro-ph.CO hep-ph

                Cosmology & Extragalactic astrophysics,High energy & Particle physics
                Cosmology & Extragalactic astrophysics, High energy & Particle physics

                Comments

                Comment on this article