10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulmonary Hypertension in Aortic and Mitral Valve Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In patients with aortic and/or mitral valve disease the presence of pulmonary hypertension (PH) indicates a decompensated state of the disease with left ventricular and left atrial dysfunction and exhausted compensatory mechanism, i.e., a state of heart failure. Pulmonary hypertension in this context is the consequence of the backwards transmission of elevated left atrial pressure. In this form of PH, pulmonary vascular resistance is initially normal (isolated post-capillary PH). Depending on the extent and chronicity of left atrial pressure elevation additional pulmonary vascular remodeling may occur (combined pre- and post-capillary PH). Mechanical interventions for the correction of valve disease often but not always reduce pulmonary pressures. However, the reduction in pulmonary pressures is often modest, and persistent PH in these patients is common and a marker of poor prognosis. In the present review we discuss the pathophysiology and clinical impact of PH in patients with aortic and mitral valve disease, the comprehensive non-invasive and invasive diagnostic approach required to define treatment of PH, and recent insights from mechanistic studies, registries and randomized studies, and we provide an outlook regarding gaps in evidence, future clinical challenges, and research opportunities in this setting.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial.

          Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) patients with heart failure and preserved left ventricular ejection fraction assigned to spironolactone did not achieve a significant reduction in the primary composite outcome (time to cardiovascular death, aborted cardiac arrest, or hospitalization for management of heart failure) compared with patients receiving placebo. In a post hoc analysis, an ≈4-fold difference was identified in this composite event rate between the 1678 patients randomized from Russia and Georgia compared with the 1767 enrolled from the United States, Canada, Brazil, and Argentina (the Americas).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study.

            This study sought to define the prevalence, severity, and significance of pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) in the general community. Although HFpEF is known to cause PH, its development is highly variable. Community-based data are lacking, and the relative contribution of pulmonary venous versus pulmonary arterial hypertension (HTN) to PH in HFpEF is unknown. We hypothesized that PH would be a marker of symptomatic pulmonary congestion, distinguishing HFpEF from pre-clinical hypertensive heart disease. This community-based study of 244 HFpEF patients (age 76 +/- 13 years; 45% male) was followed up using Doppler echocardiography over 3 years. Control subjects were 719 adults with HTN without HF (age 66 +/- 10 years; 44% male). Pulmonary artery systolic pressure (PASP) was derived from the tricuspid regurgitation velocity and PH defined as PASP >35 mm Hg. Pulmonary capillary wedge pressure (PCWP) was estimated from the ratio of early transmitral flow velocity to early mitral annular diastolic velocity. In HFpEF, PH was present in 83% and the median (25th, 75th percentile) PASP was 48 (37, 56) mm Hg. PASP increased with PCWP (r = 0.21; p < 0.007). Adjusting for PCWP, PASP was higher in HFpEF than HTN (p < 0.001). The PASP distinguished HFpEF from HTN with an area under the receiver-operating characteristic curve of 0.91 (p < 0.001) and strongly predicted mortality in HFpEF (hazard ratio: 1.3 per 10 mm Hg; p < 0.001). PH is highly prevalent and often severe in HFpEF. Although pulmonary venous HTN contributes to PH, it does not fully account for the severity of PH in HFpEF, suggesting that a component of pulmonary arterial HTN also contributes. The potent effect of PASP on mortality lends support for therapies aimed at pulmonary arterial HTN in HFpEF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathophysiology of heart failure with preserved ejection fraction.

              Approximately half of all patients with heart failure have preserved ejection fraction (HFpEF) and, as life expectancies continue to increase in western societies, the prevalence of HFpEF will continue to grow. In contrast to heart failure with reduced ejection fraction (HFrEF), no treatment has been proven in pivotal clinical trials to be effective for HFpEF, largely because of the pathophysiological heterogeneity that exists within the broad spectrum of HFpEF. This syndrome was historically considered to be caused exclusively by left ventricular diastolic dysfunction, but research has identified several other contributory factors, including limitations in left ventricular systolic reserve, systemic and pulmonary vascular function, nitric oxide bioavailability, chronotropic reserve, right heart function, autonomic tone, left atrial function, and peripheral impairments. Multiple individual mechanisms frequently coexist within the same patient to cause symptomatic heart failure, but between patients with HFpEF the extent to which each component is operative can differ widely, confounding treatment approaches. This Review focuses on our current understanding of the pathophysiological mechanisms underlying HFpEF, and how they might be mechanistically related to typical risk factors for HFpEF, including ageing, obesity, and hypertension.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                23 May 2018
                2018
                : 5
                : 40
                Affiliations
                [1] 1Cardiology Division, Kantonsspital , St. Gallen, Switzerland
                [2] 2Department of Internal Medicine, Spital Rorschach , Rorschach, Switzerland
                [3] 3Department of Cardiovascular Surgery, University Hospital Zürich , Zürich, Switzerland
                Author notes

                Edited by: Crochan John O'Sullivan, Triemli Hospital, Switzerland

                Reviewed by: Moritz Seiffert, University Heart Center Hamburg GmbH, Germany; Luigi Biasco, Cardiocentro Ticino, Switzerland

                Specialty section: This article was submitted to Structural Interventional Cardiology, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                363233
                10.3389/fcvm.2018.00040
                5974123
                29876357
                66a746a1-2a20-4d10-8c73-51fb2a8dcc25
                Copyright © 2018 Maeder, Weber, Buser, Gerhard, Haager, Maisano and Rickli

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 February 2018
                : 13 April 2018
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 83, Pages: 15, Words: 11057
                Categories
                Cardiovascular Medicine
                Review

                pulmonary hypertension,post-capillary,pre-capillary,combined pre- and post-capillary,valve disease,aortic stenosis,mitral regurgitation

                Comments

                Comment on this article