1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice ( Oryza sativa L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As climate change events become more frequent, drought is an increasing threat to agricultural production and food security. Crop rhizosphere microbiome and root exudates are critical regulators for drought adaptation, yet our understanding on the rhizosphere bacterial communities and root exudate composition as affected by drought stress is far from complete. In this study, we performed 16S rRNA gene amplicon sequencing and widely targeted metabolomic analysis of rhizosphere soil and root exudates from two contrasting rice genotypes (Nipponbare and Luodao 998) exposed to drought stress.

          Results

          A reduction in plant phenotypes was observed under drought, and the inhibition was greater for roots than for shoots. Additionally, drought exerted a negligible effect on the alpha diversity of rhizosphere bacterial communities, but obviously altered their composition. In particular, drought led to a significant enrichment of Actinobacteria but a decrease in Firmicutes. We also found that abscisic acid in root exudates was clearly higher under drought, whereas lower jasmonic acid and L-cystine concentrations. As for plant genotypes, variations in plant traits of the drought-tolerant genotype Luodao 998 after drought were smaller than those of Nipponbare. Interestingly, drought triggered an increase in Bacillus, as well as an upregulation of most organic acids and a downregulation of all amino acids in Luodao 998. Notably, both Procrustes analysis and Mantel test demonstrated that rhizosphere microbiome and root exudate metabolomic profiles were highly correlated. A number of differentially abundant genera responded to drought and genotype, including Streptomyces, Bacillus and some members of Actinobacteria, were significantly associated with organic acid and amino acid contents in root exudates. Further soil incubation experiments showed that Streptomyces was regulated by abscisic acid and jasmonic acid under drought.

          Conclusions

          Our results reveal that both drought and genotype drive changes in the compositions of rice rhizosphere bacterial communities and root exudates under the greenhouse condition, and that organic acid exudation and suppression of amino acid exudation to select specific rhizosphere bacterial communities may be an important strategy for rice to cope with drought. These findings have important implications for improving the adaptability of rice to drought from the perspective of plant–microbe interactions.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12284-023-00636-1.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            QIIME allows analysis of high-throughput community sequencing data.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              fastp: an ultra-fast all-in-one FASTQ preprocessor

              Abstract Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.
                Bookmark

                Author and article information

                Contributors
                liuyang0328@126.com , yangl@nwafu.edu.cn
                Journal
                Rice (N Y)
                Rice (N Y)
                Rice
                Springer US (New York )
                1939-8425
                1939-8433
                11 April 2023
                11 April 2023
                2023
                : 16
                : 19
                Affiliations
                [1 ]GRID grid.144022.1, ISNI 0000 0004 1760 4150, College of Agronomy, , Northwest A&F University, ; Yangling, 712100 Shaanxi China
                [2 ]GRID grid.425194.f, ISNI 0000 0001 2298 0415, International Center for Agricultural Research in the Dry Areas, ; 999055 Rabat, Morocco
                Article
                636
                10.1186/s12284-023-00636-1
                10090257
                37039929
                66d7068f-f192-4067-bfd4-254125fa6268
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 December 2022
                : 4 April 2023
                Funding
                Funded by: Key Research and Development Program of Shaanxi
                Award ID: 2021NY-083
                Award Recipient :
                Funded by: National Natural Science Foundation of China
                Award ID: 31871567
                Award Recipient :
                Funded by: Young Scholar of Tang
                Award ID: 2017
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Agriculture
                rice,drought,genotype,rhizosphere bacterial communities,root exudates
                Agriculture
                rice, drought, genotype, rhizosphere bacterial communities, root exudates

                Comments

                Comment on this article