28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Model for high-throughput screening of multitarget drugs in chemical neurosciences: synthesis, assay, and theoretic study of rasagiline carbamates.

      ACS Chemical Neuroscience
      Animals, Carbamates, chemistry, Clinical Trials as Topic, methods, standards, Computer Simulation, Drug Delivery Systems, Glutamic Acid, toxicity, High-Throughput Screening Assays, Humans, Indans, chemical synthesis, Neuroprotective Agents, pharmacology, Quantitative Structure-Activity Relationship, Reproducibility of Results, Sensitivity and Specificity, Spectrum Analysis, Stochastic Processes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The disappointing results obtained in recent clinical trials renew the interest in experimental/computational techniques for the discovery of neuroprotective drugs. In this context, multitarget or multiplexing QSAR models (mt-QSAR/mx-QSAR) may help to predict neurotoxicity/neuroprotective effects of drugs in multiple assays, on drug targets, and in model organisms. In this work, we study a data set downloaded from CHEMBL; each data point (>8000) contains the values of one out of 37 possible measures of activity, 493 assays, 169 molecular or cellular targets, and 11 different organisms (including human) for a given compound. In this work, we introduce the first mx-QSAR model for neurotoxicity/neuroprotective effects of drugs based on the MARCH-INSIDE (MI) method. First, we used MI to calculate the stochastic spectral moments (structural descriptors) of all compounds. Next, we found a model that classified correctly 2955 out of 3548 total cases in the training and validation series with Accuracy, Sensitivity, and Specificity values>80%. The model also showed excellent results in Computational-Chemistry simulations of High-Throughput Screening (CCHTS) experiments, with accuracy=90.6% for 4671 positive cases. Next, we reported the synthesis, characterization, and experimental assays of new rasagiline derivatives. We carried out three different experimental tests: assay (1) in the absence of neurotoxic agents, assay (2) in the presence of glutamate, and assay (3) in the presence of H2O2. Compounds 11 with 27.4%, 8 with 11.6%, and 9 with 15.4% showed the highest neuroprotective effects in assays (1), (2), and (3), respectively. After that, we used the mx-QSAR model to carry out a CCHTS of the new compounds in >400 unique pharmacological tests not carried out experimentally. Consequently, this model may become a promising auxiliary tool for the discovery of new drugs for the treatment of neurodegenerative diseases.

          Related collections

          Author and article information

          Comments

          Comment on this article