5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cryptic species as a window into the paradigm shift of the species concept

      1 , 2 , 3 , 4

      Molecular Ecology

      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty.

          Related collections

          Most cited references 227

          • Record: found
          • Abstract: found
          • Article: not found

          Cryptic species as a window on diversity and conservation.

          The taxonomic challenge posed by cryptic species (two or more distinct species classified as a single species) has been recognized for nearly 300 years, but the advent of relatively inexpensive and rapid DNA sequencing has given biologists a new tool for detecting and differentiating morphologically similar species. Here, we synthesize the literature on cryptic and sibling species and discuss trends in their discovery. However, a lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups. The discovery of cryptic species is likely to be non-random with regard to taxon and biome and, hence, could have profound implications for evolutionary theory, biogeography and conservation planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species.

            Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The integrative future of taxonomy

              Background Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species. Results Integrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth. Conclusions We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Ecology
                Mol Ecol
                Wiley
                09621083
                February 2018
                February 2018
                February 16 2018
                : 27
                : 3
                : 613-635
                Affiliations
                [1 ]SubBio Lab; Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
                [2 ]Department of Aquatic Ecology; Eawag; Dübendorf Switzerland
                [3 ]Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
                [4 ]Université Lyon; Université Claude Bernard Lyon 1; CNRS; ENTPE; UMR5023 LEHNA Villeurbanne France
                Article
                10.1111/mec.14486
                29334414
                © 2018

                Comments

                Comment on this article