18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Panax ginseng and Panax notoginseng, two well-known medical plants with economic value, have a long history of use for managing various diseases in Asian countries. Accumulating clinical and experimental evidence suggests that notoginsenosides and ginsenosides, which are the major bioactive components of the plants, have a variety of beneficial effects on several types of disease, including metabolic, vascular, and central nervous system disease. Considerable attention has been focused on ginsenoside Rb1 derived from their common ownership as an anti-diabetic agent that can attenuate insulin resistance and various complications. Particularly, in vitro and in vivo models have suggested that ginsenoside Rb1 exerts various pharmacological effects on metabolic disorders, including attenuation of glycemia, hypertension, and hyperlipidemia, which depend on the modulation of oxidative stress, inflammatory response, autophagy, and anti-apoptosis effects. Regulation of these pathophysiological mechanisms can improve blood glucose and insulin resistance and protect against macrovascular/microvascular related complications. This review summarizes the pharmacological effects and mechanisms of action of ginsenoside Rb1 in the management of diabetes or diabetic complications. Moreover, a multi-target effect and mechanism analysis of its antidiabetic actions were performed to provide a theoretical basis for further pharmacological studies and new drug development for clinical treatment of type 2 diabetes. In conclusion, ginsenoside Rb1 exerts significant anti-obesity, anti-hyperglycemic, and anti-diabetic effects by regulating the effects of glycolipid metabolism and improving insulin and leptin sensitivities. All of these findings suggest ginsenoside Rb1 exerts protective effects on diabetes and diabetic complications by the regulation of mitochondrial energy metabolism, improving insulin resistance and alleviating the occurrence complications, which should be further explored. Hence, ginsenoside Rb1 may be developed as a potential anti-obesity, anti-hyperglycemic, and anti-diabetic agent with multi-target effects.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.

          Plasma concentrations of adiponectin, a novel adipose-specific protein with putative antiatherogenic and antiinflammatory effects, were found to be decreased in Japanese individuals with obesity, type 2 diabetes, and cardiovascular disease, conditions commonly associated with insulin resistance and hyperinsulinemia. To further characterize the relationship between adiponectinemia and adiposity, insulin sensitivity, insulinemia, and glucose tolerance, we measured plasma adiponectin concentrations, body composition (dual-energy x-ray absorptiometry), insulin sensitivity (M, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) in 23 Caucasians and 121 Pima Indians, a population with a high propensity for obesity and type 2 diabetes. Plasma adiponectin concentration was negatively correlated with percent body fat (r = -0.43), waist-to-thigh ratio (r = -0.46), fasting plasma insulin concentration (r = -0.63), and 2-h glucose concentration (r = -0.38), and positively correlated with M (r = 0.59) (all P < 0.001); all relations were evident in both ethnic groups. In a multivariate analysis, fasting plasma insulin concentration, M, and waist-to-thigh ratio, but not percent body fat or 2-h glucose concentration, were significant independent determinates of adiponectinemia, explaining 47% of the variance (r(2) = 0.47). Differences in adiponectinemia between Pima Indians and Caucasians (7.2 +/- 2.6 vs. 10.2 +/- 4.3 microg/ml, P < 0.0001) and between Pima Indians with normal, impaired, and diabetic glucose tolerance (7.5 +/- 2.7, 6.1 +/- 2.0, 5.5 +/- 1.6 microg/ml, P < 0.0001) remained significant after adjustment for adiposity, but not after additional adjustment for M or fasting insulin concentration. These results confirm that obesity and type 2 diabetes are associated with low plasma adiponectin concentrations in different ethnic groups and indicate that the degree of hypoadiponectinemia is more closely related to the degree of insulin resistance and hyperinsulinemia than to the degree of adiposity and glucose intolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group.

            Treatment with diet alone, insulin, sulfonylurea, or metformin is known to improve glycemia in patients with type 2 diabetes mellitus, but which treatment most frequently attains target fasting plasma glucose (FPG) concentration of less than 7.8 mmol/L (140 mg/dL) or glycosylated hemoglobin A1c (HbA1c) below 7% is unknown. To assess how often each therapy can achieve the glycemic control target levels set by the American Diabetes Association. Randomized controlled trial conducted between 1977 and 1997. Patients were recruited between 1977 and 1991 and were followed up every 3 months for 3, 6, and 9 years after enrollment. Outpatient diabetes clinics in 15 UK hospitals. A total of 4075 patients newly diagnosed as having type 2 diabetes ranged in age between 25 and 65 years and had a median (interquartile range) FPG concentration of 11.5 (9.0-14.4) mmol/L [207 (162-259) mg/dL], HbA1c levels of 9.1% (7.5%-10.7%), and a mean (SD) body mass index of 29 (6) kg/m2. After 3 months on a low-fat, high-carbohydrate, high-fiber diet, patients were randomized to therapy with diet alone, insulin, sulfonylurea, or metformin. Fasting plasma glucose and HbA1c levels, and the proportion of patients who achieved target levels below 7% HbA1c or less than 7.8 mmol/L (140 mg/dL) FPG at 3, 6, or 9 years following diagnosis. The proportion of patients who maintained target glycemic levels declined markedly over 9 years of follow-up. After 9 years of monotherapy with diet, insulin, or sulfonylurea, 8%, 42%, and 24%, respectively, achieved FPG levels of less than 7.8 mmol/L (140 mg/dL) and 9%, 28%, and 24% achieved HbA1c levels below 7%. In obese patients randomized to metformin, 18% attained FPG levels of less than 7.8 mmol/L (140 mg/dL) and 13% attained HbA1c levels below 7%. Patients less likely to achieve target levels were younger, more obese, or more hyperglycemic than other patients. Each therapeutic agent, as monotherapy, increased 2- to 3-fold the proportion of patients who attained HbA1c below 7% compared with diet alone. However, the progressive deterioration of diabetes control was such that after 3 years approximately 50% of patients could attain this goal with monotherapy, and by 9 years this declined to approximately 25%. The majority of patients need multiple therapies to attain these glycemic target levels in the longer term.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular understanding of hyperglycemia's adverse effects for diabetic complications.

              Diabetic complications are the major cause of morbidity and mortality in persons with diabetes. Chronic hyperglycemia is a major initiator of diabetic microvascular complications (eg, retinopathy, neuropathy, nephropathy). Glucose processing uses a variety of diverse metabolic pathways; hence, chronic hyperglycemia can induce multiple cellular changes leading to complications. Several predominant well-researched theories have been proposed to explain how hyperglycemia can produce the neural and vascular derangements that are hallmarks of diabetes. These theories can be separated into those that emphasize the toxic effects of hyperglycemia and its pathophysiological derivatives (such as oxidants, hyperosmolarity, or glycation products) on tissues directly and those that ascribe pathophysiological importance to a sustained alteration in cell signaling pathways (such as changes in phospholipids or kinases) induced by the products of glucose metabolism. This article summarizes these theories and the potential therapeutic interventions that may prevent diabetic complications in the presence of hyperglycemia, control of which is often difficult with current therapeutic options.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                28 February 2019
                March 2019
                : 8
                : 3
                : 204
                Affiliations
                [1 ]Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; zhoup0520@ 123456163.com (P.Z.); ginseng123@ 123456163.com (W.X.); wym91116@ 123456163.com (S.H.); xbmeng@ 123456implad.ac.cn (X.M.)
                [2 ]Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
                [3 ]Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
                [4 ]Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
                [5 ]Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China; sun.yifan@ 123456imicams.ac.cn
                Author notes
                Author information
                https://orcid.org/0000-0002-5062-7843
                Article
                cells-08-00204
                10.3390/cells8030204
                6468558
                30823412
                6707d429-56a6-4d7a-a479-cca69e21a609
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 December 2018
                : 23 February 2019
                Categories
                Review

                ginsenoside rb1,diabetes,diabetic complication,multi-target effects

                Comments

                Comment on this article