18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifungal Activity of Lactic Acid Bacteria Combinations in Dairy Mimicking Models and Their Potential as Bioprotective Cultures in Pilot Scale Applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Consumer's demand for naturally preserved food products is growing and the use of bioprotective cultures is an alternative to chemical preservatives or a complementary tool to hurdle technologies to avoid or delay fungal spoilage of dairy products. To develop antifungal cultures for the dairy product biopreservation, experiments were conducted both in vitro and in situ. Firstly, the antifungal activity of 32 strains of lactic acid bacteria (LAB) and propionibacteria was screened alone, and then on combinations based on 5 selected lactobacilli strains. This screening was performed in yogurt and cheese models against four major spoilage fungi previously isolated from contaminated dairy products ( Penicillium commune, Mucor racemosus, Galactomyces geotrichum, and Yarrowia lipolytica). Selected combinations were then tested as adjunct cultures in sour cream and semi-hard cheeses produced at a pilot scale to evaluate their antifungal activity during challenge tests against selected fungal targets ( P. commune, M. racemosus, and Rhodotorula mucilaginosa) and shelf life tests; and their impact on product organoleptic properties. The screening step allowed selecting two binary combinations, A1 and A3 composed of Lactobacillus plantarum L244 and either Lactobacillus harbinensis L172 or Lactobacillus rhamnosus CIRM-BIA1113, respectively. In situ assays showed that the A1 combination delayed the growth of P. commune, M. racemosus and R. mucilaginosa for 2–24 days on sour cream depending of the antifungal culture inoculum, without effect on organoleptic properties at low inoculum (10 6 colony-forming units (CFU)/mL). Moreover, the A1 and A3 combinations also delayed the growth of P. commune in semi-hard cheese for 1–6 days and 1 day, respectively. Antifungal cultures neither impacted the growth of starter cultures in both sour cream and cheese nor the products' pH, although post acidification was observed in sour cream supplemented with these combinations at the highest concentrations (2.10 7 CFU/mL). The combination of both in vitro and in situ screening assays allowed developing 2 antifungal combinations exhibiting significant antifungal activity and providing future prospects for use as bioprotective cultures in dairy products.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Lactic acid bacteria as functional starter cultures for the food fermentation industry

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Food fermentations: microorganisms with technological beneficial use.

            Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on "the history of use", "traditional food", or "general recognition of safety". Authoritative lists of microorganisms with a documented use in food have therefore come into high demand. One such list was published in 2002 as a result of a joint project between the International Dairy Federation (IDF) and the European Food and Feed Cultures Association (EFFCA). The "2002 IDF inventory" has become a de facto reference for food cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biopreservation by lactic acid bacteria.

              Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 August 2018
                2018
                : 9
                : 1787
                Affiliations
                [1] 1Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise , Plouzané, France
                [2] 2UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest , Rennes, France
                [3] 3Applied Mathematics Department, Agrocampus Ouest , Rennes, France
                Author notes

                Edited by: Francesca Patrignani, Università degli Studi di Bologna, Italy

                Reviewed by: Giulia Tabanelli, Università degli Studi di Bologna, Italy; Carmen Wacher, Universidad Nacional Autónoma de México, Mexico

                *Correspondence: Emmanuel Coton emmanuel.coton@ 123456univ-brest.fr

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01787
                6090892
                29403456
                6725acbb-fefa-4063-84aa-1b97976d67e3
                Copyright © 2018 Leyva Salas, Thierry, Lemaître, Garric, Harel-Oger, Chatel, Lê, Mounier, Valence and Coton.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 April 2018
                : 17 July 2018
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 46, Pages: 18, Words: 11019
                Funding
                Funded by: Conseil Régional de Bretagne 10.13039/501100004584
                Award ID: 13008651
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                biopreservation,dairy products,propionibacteria,lactobacillus harbinensis,l. plantarum,l. rhamnosus

                Comments

                Comment on this article