478
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although practiced clinically for more than 40 years, the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSCs identified a purine derivative, StemRegenin 1 (SR1), that promotes the ex vivo expansion of CD34+ cells. Culture of HSCs with SR1 led to a 50-fold increase in cells expressing CD34 and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AHR). The identification of SR1 and AHR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies.

          Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor.

            2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant with many toxic effects, including endocrine disruption, reproductive dysfunction, immunotoxicity, liver damage, and cancer. These are mediated by TCDD binding to and activating the aryl hydrocarbon receptor (AhR), a basic helix-loop-helix transcription factor. In this regard, targeting the AhR using novel small molecule inhibitors is an attractive strategy for the development of potential preventive agents. In this study, by screening a chemical library composed of approximately 10,000 compounds, we identified a novel compound, 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191), that potently inhibits TCDD-induced AhR-dependent transcription. In addition, CH-223191 blocked the binding of TCDD to AhR and inhibited TCDD-mediated nuclear translocation and DNA binding of AhR. These inhibitory effects of CH-223191 prevented the expression of cytochrome P450 enzymes, target genes of the AhR. Unlike many known antagonists of AhR, CH-223191 did not have detectable AhR agonist-like activity or estrogenic potency, suggesting that CH-223191 is a specific antagonist of AhR. It is noteworthy that CH-223191 potently prevented TCDD-elicited cytochrome P450 induction, liver toxicity, and wasting syndrome in mice. Taken together, these results demonstrate that this novel compound, CH-223191, may be a useful agent for the study of AhR-mediated signal transduction and the prevention of TCDD-associated pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow.

              Murine hematopoietic stem and progenitor cells (HSPCs) home to bone marrow in part by rolling on P-selectin and E-selectin expressed on endothelial cells. Human adult CD34(+) cells, which are enriched in HSPCs, roll on endothelial selectins in bone marrow vessels of nonobese diabetic/severe combined immune deficiency (NOD/SCID) mice. Many human umbilical cord blood (CB) CD34(+) cells do not roll in these vessels, in part because of an uncharacterized defect in binding to P-selectin. Selectin ligands must be alpha1-3 fucosylated to form glycan determinants such as sialyl Lewis x (sLe(x)). We found that inadequate alpha1-3 fucosylation of CB CD34(+) cells, particularly CD34(+)CD38(-/low) cells that are highly enriched in HSPCs, caused them to bind poorly to E-selectin as well as to P-selectin. Treatment of CB CD34(+) cells with guanosine diphosphate (GDP) fucose and exogenous alpha1-3 fucosyltransferase VI increased cell-surface sLe(x) determinants, augmented binding to fluid-phase P- and E-selectin, and improved cell rolling on P- and E-selectin under flow. Similar treatment of CB mononuclear cells enhanced engraftment of human hematopoietic cells in bone marrows of irradiated NOD/SCID mice. These observations suggest that alpha1-3 fucosylation of CB cells might be a simple and effective method to improve hematopoietic cell homing to and engraftment in bone marrows of patients receiving CB transplants.
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                American Association for the Advancement of Science (AAAS)
                1095-9203
                0036-8075
                Sep 10 2010
                : 329
                : 5997
                Affiliations
                [1 ] Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
                Article
                science.1191536 NIHMS267697
                10.1126/science.1191536
                3033342
                20688981
                67333d8c-7ccb-45ce-9662-04bd1f1c8f51
                History

                Comments

                Comment on this article