49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal.

      Science (New York, N.Y.)
      Animals, Cell Culture Techniques, Fetal Blood, cytology, drug effects, physiology, Genetic Therapy, methods, Hematopoiesis, Hematopoietic Stem Cell Transplantation, Hematopoietic Stem Cells, Humans, Immunocompromised Host, Indoles, chemistry, pharmacology, Mice, Pyrimidines, Receptors, Aryl Hydrocarbon, antagonists & inhibitors, Regeneration, Small Molecule Libraries

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds, UM171 being the prototype, is independent of suppression of the aryl hydrocarbon receptor, which targets cells with more-limited regenerative potential. The properties of UM171 make it a potential candidate for hematopoietic stem cell transplantation and gene therapy. Copyright © 2014, American Association for the Advancement of Science.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.

          Although practiced clinically for more than 40 years, the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSCs identified a purine derivative, StemRegenin 1 (SR1), that promotes the ex vivo expansion of CD34+ cells. Culture of HSCs with SR1 led to a 50-fold increase in cells expressing CD34 and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AHR). The identification of SR1 and AHR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry.

            Hematopoietic stem-cell transplantation (HSCT) is a potentially lifesaving therapy for several blood cancers and other diseases. For patients without a suitable related HLA-matched donor, unrelated-donor registries of adult volunteers and banked umbilical cord-blood units, such as the Be the Match Registry operated by the National Marrow Donor Program (NMDP), provide potential sources of donors. Our goal in the present study was to measure the likelihood of finding a suitable donor in the U.S. registry. Using human HLA data from the NMDP donor and cord-blood-unit registry, we built population-based genetic models for 21 U.S. racial and ethnic groups to predict the likelihood of identifying a suitable donor (either an adult donor or a cord-blood unit) for patients in each group. The models incorporated the degree of HLA matching, adult-donor availability (i.e., ability to donate), and cord-blood-unit cell dose. Our models indicated that most candidates for HSCT will have a suitable (HLA-matched or minimally mismatched) adult donor. However, many patients will not have an optimal adult donor--that is, a donor who is matched at high resolution at HLA-A, HLA-B, HLA-C, and HLA-DRB1. The likelihood of finding an optimal donor varies among racial and ethnic groups, with the highest probability among whites of European descent, at 75%, and the lowest probability among blacks of South or Central American descent, at 16%. Likelihoods for other groups are intermediate. Few patients will have an optimal cord-blood unit--that is, one matched at the antigen level at HLA-A and HLA-B and matched at high resolution at HLA-DRB1. However, cord-blood units mismatched at one or two HLA loci are available for almost all patients younger than 20 years of age and for more than 80% of patients 20 years of age or older, regardless of racial and ethnic background. Most patients likely to benefit from HSCT will have a donor. Public investment in donor recruitment and cord-blood banks has expanded access to HSCT. (Funded by the Office of Naval Research, Department of the Navy, and the Health Resources and Services Administration, Department of Health and Human Services.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution.

              Delayed myeloid engraftment after cord blood transplantation (CBT) is thought to result from inadequate numbers of progenitor cells in the graft and is associated with increased early transplant-related morbidity and mortality. New culture strategies that increase the number of cord blood progenitors capable of rapid myeloid engraftment after CBT would allow more widespread use of this stem cell source for transplantation. Here we report the development of a clinically relevant Notch-mediated ex vivo expansion system for human CD34(+) cord blood progenitors that results in a marked increase in the absolute number of stem/progenitor cells, including those capable of enhanced repopulation in the marrow of immunodeficient nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, when cord blood progenitors expanded ex vivo in the presence of Notch ligand were infused in a clinical setting after a myeloablative preparative regimen for stem cell transplantation, the time to neutrophil recovery was substantially shortened. To our knowledge, this is the first instance of rapid engraftment derived from ex vivo expanded stem/progenitor cells in humans.
                Bookmark

                Author and article information

                Comments

                Comment on this article