Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Coagulation, Fibrinolysis and Angiogenesis: New Insights from Knockout Mice

      Cardiorenal Medicine

      S. Karger AG

      Coagulation system, Plasminogen system, Endothelial cells, Angiogenesis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiogenesis plays a key role in a broad array of physiologic and pathologic processes. Two major systems – coagulation and fibrinolysis – maintaining hemostasis, have recently been implicated in angiogenesis. Generation of mice deficient in components of coagulation and plasminogen systems has provided an extraordinary opportunity to define the role of each of these systems in vivo and to elucidate molecular mechanisms involved in angiogenesis. It appears that several factors of the coagulation system, such as the tissue factor, the factor V and the thrombin receptor, play an important role in embryonic vessel formation, most probably in the formation of the primitive vascular wall. In addition, the plasminogen system appears to play a significant role in angiogenesis in adulthood, regulating the migration of endothelial and smooth muscle cells, the degradation of the extracellular matrix and activity of the metalloproteinase system. These new revelations open a possibility for future therapeutic strategies to specifically control angiogenesis in different pathological processes where abnormalities of tissue vascularization are pathogenetically prominent.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.

           M Barton,  J Medford,  J. Long (1996)
          The KNOTTED class of plant genes encodes homeodomain proteins. These genes have been found in all plant species where they have been sought and, where examined, show expression patterns that suggest they play an important role in shoot meristem function. Until now, all mutant phenotypes associated with these genes have been due to gain-of-function mutations, making it difficult to deduce their wild-type function. Here we present evidence that the Arabidopsis SHOOT-MERISTEMLESS (STM) gene, required for shoot apical meristem formation during embryogenesis, encodes a class I KNOTTED-like protein. We also describe the expression pattern of this gene in the wild-type plant. To our knowledge, STM is the first gene shown to mark a specific pattern element in the developing plant embryo both phenotypically and molecularly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins.

             M Gyetko,  I Apel,  N Hiraoka (1998)
            During angiogenesis, endothelial cells penetrate fibrin barriers via undefined proteolytic mechanisms. We demonstrate that the fibrinolytic plasminogen activator (PA)-plasminogen system is not required for this process, since tissues isolated from PA- or plasminogen-deficient mice successfully neovascularize fibrin gels. By contrast, neovessel formation, in vitro and in vivo, is dependent on fibrinolytic, endothelial cell-derived matrix metalloproteinases (MMP). MMPs directly regulate this process as invasion-incompetent cells penetrate fibrin barriers when transfected with the most potent fibrinolytic metalloproteinase identified in endothelium, membrane type-1 MMP (MT1-MMP). Membrane display of MT1-MMP is required, as invasion-incompetent cells expressing a fibrinolytically active, transmembrane-deleted form of MT1-MMP remain noninvasive. These observations identify a PA-independent fibrinolytic pathway wherein tethered MMPs function as pericellular fibrinolysins during the neovascularization process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How the protease thrombin talks to cells.

              How does a protease act like a hormone to regulate cellular functions? The coagulation protease thrombin (EC 3.4.21.5) activates platelets and regulates the behavior of other cells by means of G protein-coupled protease-activated receptors (PARs). PAR1 is activated when thrombin binds to and cleaves its amino-terminal exodomain to unmask a new receptor amino terminus. This new amino terminus then serves as a tethered peptide ligand, binding intramolecularly to the body of the receptor to effect transmembrane signaling. The irreversibility of PAR1's proteolytic activation mechanism stands in contrast to the reversible ligand binding that activates classical G protein-coupled receptors and compels special mechanisms for desensitization and resensitization. In endothelial cells and fibroblasts, activated PAR1 rapidly internalizes and then sorts to lysosomes rather than recycling to the plasma membrane as do classical G protein-coupled receptors. This trafficking behavior is critical for termination of thrombin signaling. An intracellular pool of thrombin receptors refreshes the cell surface with naïve receptors, thereby maintaining thrombin responsiveness. Thus cells have evolved a trafficking solution to the signaling problem presented by PARs. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin. PAR2 is activated by trypsin and by trypsin-like proteases but not by thrombin. Recent studies with knockout mice, receptor-activating peptides, and blocking antibodies are beginning to define the role of these receptors in vivo.
                Bookmark

                Author and article information

                Journal
                EXN
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2002
                2002
                09 October 2002
                : 10
                : 5-6
                : 299-306
                Affiliations
                Department of Medicine, New York Medical College, Valhalla, N.Y., USA
                Article
                65305 Exp Nephrol 2002;10:299–306
                10.1159/000065305
                12381913
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 1, References: 52, Pages: 8
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/65305
                Categories
                Minireview

                Comments

                Comment on this article