56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32 to 67% strain to failure, ~4 to 11 MPa elastic modulus), was highly absorbent (50% material porosity), supported cell viability and proliferation, and induced osteogenic differentiation of bone marrow-derived human mesenchymal stem cells cultured in vitro over 4 weeks without any osteo-inducing factors in the medium. We evaluated HB in vivo in a mouse subcutaneous implant model for material biocompatibility (7 and 35 days), in a rat posterolateral spinal fusion model for new bone formation (8 weeks), and in a large, non-human primate calvarial defect case study (4 weeks). HB did not elicit a negative immune response, became vascularized, quickly integrated with surrounding tissues, and rapidly ossified and supported new bone growth without the need for added biological factors.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Bone substitutes: an update.

          Autograft is considered ideal for grafting procedures, providing osteoinductive growth factors, osteogenic cells, and an osteoconductive scaffold. Limitations, however, exist regarding donor site morbidity and graft availability. Allograft on the other hand, posses the risk of disease transmission. Synthetic graft substitutes lack osteoinductive or osteogenic properties. Composite grafts combine scaffolding properties with biological elements to stimulate cell proliferation and differentiation and eventually osteogenesis. We present here an overview of bone grafts and graft substitutes available for clinical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned.

            Increasingly, reports of frequent and occasionally catastrophic complications associated with use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion surgeries are being published. In the original peer review, industry-sponsored publications describing the use of rhBMP-2 in spinal fusion, adverse events of these types and frequency were either not reported at all or not reported to be associated with rhBMP-2 use. Some authors and investigators have suggested that these discrepancies were related to inadequate peer review and editorial oversight. To compare the conclusions regarding the safety and related efficacy published in the original rhBMP-2 industry-sponsored trials with subsequently available Food and Drug Administration (FDA) data summaries, follow-up publications, and administrative and organizational databases. Systematic review. Results and conclusions from original industry-sponsored rhBMP-2 publications regarding safety and related efficacy were compared with available FDA data summaries, follow-up publications, and administrative and organizational database analyses. There were 13 original industry-sponsored rhBMP-2 publications regarding safety and efficacy, including reports and analyses of 780 patients receiving rhBMP-2 within prospective controlled study protocols. No rhBMP-2-associated adverse events (0%) were reported in any of these studies (99% confidence interval of adverse event rate <0.5%). The study designs of the industry-sponsored rhBMP-2 trials for use in posterolateral fusions and posterior lateral interbody fusion were found to have potential methodological bias against the control group. The reported morbidity of iliac crest donor site pain was also found to have serious potential design bias. Comparative review of FDA documents and subsequent publications revealed originally unpublished adverse events and internal inconsistencies. From this review, we suggest an estimate of adverse events associated with rhBMP-2 use in spine fusion ranging from 10% to 50% depending on approach. Anterior cervical fusion with rhBMP-2 has an estimated 40% greater risk of adverse events with rhBMP-2 in the early postoperative period, including life-threatening events. After anterior interbody lumbar fusion rates of implant displacement, subsidence, infection, urogenital events, and retrograde ejaculation were higher after using rhBMP-2 than controls. Posterior lumbar interbody fusion use was associated with radiculitis, ectopic bone formation, osteolysis, and poorer global outcomes. In posterolateral fusions, the risk of adverse effects associated with rhBMP-2 use was equivalent to or greater than that of iliac crest bone graft harvesting, and 15% to 20% of subjects reported early back pain and leg pain adverse events; higher doses of rhBMP-2 were also associated with a greater apparent risk of new malignancy. Level I and Level II evidence from original FDA summaries, original published data, and subsequent studies suggest possible study design bias in the original trials, as well as a clear increased risk of complications and adverse events to patients receiving rhBMP-2 in spinal fusion. This risk of adverse events associated with rhBMP-2 is 10 to 50 times the original estimates reported in the industry-sponsored peer-reviewed publications. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.

              Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Transl Med
                Science translational medicine
                American Association for the Advancement of Science (AAAS)
                1946-6242
                1946-6234
                Sep 28 2016
                : 8
                : 358
                Affiliations
                [1 ] Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.
                [2 ] Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA. Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
                [3 ] Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Chicago, IL 60611, USA.
                [4 ] Department of Orthopaedic Surgery, Northwestern University, Chicago, IL 60611, USA.
                [5 ] Department of Veterinary Pathobiology, University of Illinois, Urbana, IL 61822, USA.
                [6 ] Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Chicago, IL 60611, USA.
                [7 ] Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA. Department of Orthopaedic Surgery, Northwestern University, Chicago, IL 60611, USA.
                [8 ] Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA.
                [9 ] Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA. Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA. Department of Surgery, Division of Organ Transplantation, Northwestern University, Chicago, IL 60611, USA. ramille-shah@northwestern.edu.
                Article
                8/358/358ra127
                10.1126/scitranslmed.aaf7704
                27683552
                67707bdd-641a-47f3-ad52-a689414c47a6
                History

                Comments

                Comment on this article