10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A specific taurine recognition site in the rabbit brain is responsible for taurine effects on thermoregulation.

      British Journal of Pharmacology
      Animals, Binding Sites, drug effects, physiology, Body Temperature Regulation, Brain, metabolism, Injections, Intraventricular, Male, Rabbits, Taurine, pharmacology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (1) Taurine and GABA are recognized as endogenous cryogens. In a previous study, some structural analogues of taurine, namely 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine 1,1-dioxide (TAG), 2-aminoethylarsonic (AEA), 2-hydroxyethanesulfonic (ISE) and (+/-)cis-2-aminocyclohexane sulfonic acids (CAHS) have been shown to displace [(3)H]taurine binding from rabbit brain synaptic membrane preparations, without interacting either with GABA-ergic systems, nor with taurine uptake mechanism, thus behaving like direct taurinergic agents. (2) To answer the question whether the role of taurine as an endogenous cryogen depends on the activation of GABA receptors or that of specific taurine receptor(s), taurine or the above structural analogues were injected intracerebroventricularly in conscious, restrained rabbits singularly or in combination and their effects on rectal (RT)- and ear-skin temperature and gross motor behavior (GMB) were monitored. (3) Taurine (1.2 x 10(-6)-4.8 x 10(-5) mol) induced a dose-related hypothermia, vasodilation at ear vascular bed and inhibition of GMB. CAHS, at the highest dose tested (4.8 x 10(-5) mol) induced a taurine-like effect either on RT or GMB. On the contrary ISE, injected at the same doses of taurine, induced a dose-related hyperthermia, vasoconstriction and excitation of GMB. AEA and TAG caused a dose-related hyperthermia, but at doses higher than 1.2 x 10(-7) mol caused death within 24 h after treatment. (4) CAHS (4.8 x 10(-5) mol) antagonized the hyperthermic effect induced by TAG (1.2 x 10(-6) mol), AEA (1.2 x 10(-8) mol) or ISE (4.8 x 10(-5) mol). (5) In conclusion, these findings may indicate the existence of a recognition site specific for taurine, responsible for its effects on thermoregulation.

          Related collections

          Author and article information

          Journal
          12788808
          1573873
          10.1038/sj.bjp.0705274

          Chemistry
          Animals,Binding Sites,drug effects,physiology,Body Temperature Regulation,Brain,metabolism,Injections, Intraventricular,Male,Rabbits,Taurine,pharmacology

          Comments

          Comment on this article