Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FOXP3 + T regs and B7-H1 +/PD-1 + T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have demonstrated a direct involvement of B7-H1, PD-1 and FOXP3 molecules in the immune escape of cancer. B7-H1 is an inhibitory molecule that binds to PD-1 on T lymphocytes, while FOXP3 is a marker for regulatory T cells (T regs). We have previously demonstrated the association of B7-H1-expressing T infiltrating lymphocytes (TIL) with high-risk breast cancer patients while other studies reported the involvement of FOXP3+ T regs as a bad prognostic factor in breast tumors. Although the co-existence between the two types of cells has been demonstrated in vitro and animal models, their relative infiltration and correlation with the clinicopathological parameters of cancer patients have not been well studied. Therefore, we investigated TIL-expressing the B7-H1, PD-1, and FOXP3 molecules, in the microenvironment of human breast tumors and their possible association with the progression of the disease.

          Methods

          Using immunohistochemistry, tumor sections from 62 breast cancer patients were co-stained for B7-H1, PD-1 and FOXP3 molecules and their expression was statistically correlated with factors known to be involved in the progression of the disease.

          Results

          A co-existence of B7-H1 + T lymphocytes and FOXP3 + T regs was evidenced by the highly significant correlation of these molecules ( P < .0001) and their expression by different T lymphocyte subsets was clearly demonstrated. Interestingly, concomitant presence of FOXP3 + T regs, B7-H1 + and PD-1 + TIL synergistically correlated with high histological grade (III) ( P < .001), estrogen receptor negative status ( P = .017), and the presence of severe lymphocytic infiltration ( P = .022).

          Conclusion

          Accumulation of TIL-expressing such inhibitory molecules may deteriorate the immunity of high-risk breast cancer patients and this should encourage vigorous combinatorial immunotherapeutic approaches targeting T regs and B7-H1/PD-1 molecules.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

          PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity.

            Contemporary approaches for vaccination and immunotherapy are often capable of eliciting strong T-cell responses against tumor antigens. However, such responses are not parallel to clinical tumor regression. The development of evasion mechanisms within tumor microenvironment may be responsible for poor therapeutic responses. We report here that constitutive or inducible expression of B7-H1, a B7 family molecule widely expressed by cancers, confers resistance to therapeutic anti-CD137 antibody in mice with established tumors. The resistance is accompanied with failure of antigen-specific CD8+ CTLs to destroy tumor cells without impairment of CTL function. Blockade of B7-H1 or PD-1 by specific monoclonal antibodies could reverse this resistance and profoundly enhance therapeutic efficacy. Our findings support that B7-H1/PD-1 forms a molecular shield to prevent destruction by CTLs and implicate new approaches for immunotherapy of human cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD4+CD25high regulatory cells in human peripheral blood.

              Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2008
                23 February 2008
                : 8
                : 57
                Affiliations
                [1 ]Tumor Immunology Section, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
                [2 ]Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
                [3 ]Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
                [4 ]King Faisal Cancer Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
                Article
                1471-2407-8-57
                10.1186/1471-2407-8-57
                2279136
                18294387
                67dbdb25-0c85-4e60-b4f8-02b8d63694c4
                Copyright © 2008 Ghebeh et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 December 2007
                : 23 February 2008
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article