Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1–nuclear factor-κB/p65 pathway in RAW264.7 macrophages and in COPD mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ophiocordyceps sinensis ( C. sinensis) extracts have been found to have a therapeutic effect on patients with chronic obstructive pulmonary disease (COPD). Silent information regulator 1 (SIRT1) plays an important role in the regulation of inflammatory mediators and correlates with lung function and COPD exacerbations. The objective of this work was to explore the anti-inflammatory effect and preliminary pathways of nucleosides from cultured C. sinensis on RAW264.7 macrophages and COPD mice.

          Materials and methods

          The nucleosides were extracted from cultured C. sinensis powder and further purified by macroporous resin D101 and glucan G10 columns. Inflammation and oxidative stress models in RAW264.7 macrophages and in mice were established by injection of cigarette smoke extract (CSE). We then examined how the isolated nucleosides regulated the production of the associated inflammatory mediators in vitro and in vivo by enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and Western blot.

          Results

          The nucleosides inhibited inflammatory mediator expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and nitric oxide in both the CSE-stimulated RAW264.7 macrophages and mice. Moreover, the nucleosides elevated SIRT1 activation and suppressed nuclear factor-κB (NF-κB)/p65 activation in vitro and in vivo. Nucleoside treatment significantly decreased the levels of the inflammatory mediators in the bronchoalveolar lavage fluid (BALF) and serum of the CSE-induced mice. The nucleosides also altered the recruitment of inflammatory cells in BALF and improved characteristic features of the lungs in the CSE-induced mice.

          Conclusion

          These results show that the nucleosides suppressed COPD inflammation through the SIRT1–NF-κB/p65 pathway, suggesting that the nucleosides may be partly responsible for the therapeutic effects of cultured C. sinensis on COPD patients.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic obstructive pulmonary disease

          Summary Chronic obstructive pulmonary disease (COPD) is characterised by progressive airflow obstruction that is only partly reversible, inflammation in the airways, and systemic effects or comorbities. The main cause is smoking tobacco, but other factors have been identified. Several pathobiological processes interact on a complex background of genetic determinants, lung growth, and environmental stimuli. The disease is further aggravated by exacerbations, particularly in patients with severe disease, up to 78% of which are due to bacterial infections, viral infections, or both. Comorbidities include ischaemic heart disease, diabetes, and lung cancer. Bronchodilators constitute the mainstay of treatment: β2 agonists and long-acting anticholinergic agents are frequently used (the former often with inhaled corticosteroids). Besides improving symptoms, these treatments are also thought to lead to some degree of disease modification. Future research should be directed towards the development of agents that notably affect the course of disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenesis of chronic obstructive pulmonary disease.

            The current epidemic of chronic obstructive pulmonary disease (COPD) has produced a worldwide health care burden, approaching that imposed by transmittable infectious diseases. COPD is a multidimensional disease, with varied intermediate and clinical phenotypes. This Review discusses the pathogenesis of COPD, with particular focus on emphysema, based on the concept that pulmonary injury involves stages of initiation (by exposure to cigarette smoke, pollutants, and infectious agents), progression, and consolidation. Tissue damage entails complex interactions among oxidative stress, inflammation, extracellular matrix proteolysis, and apoptotic and autophagic cell death. Lung damage by cigarette smoke ultimately leads to self-propagating processes, resulting in macromolecular and structural alterations - features similar to those seen in aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox regulation of SIRT1 in inflammation and cellular senescence.

              Sirtuin 1 (SIRT1) regulates inflammation, aging (life span and health span), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging, in which oxidative stress occurs. SIRT1 is regulated by a NAD(+)-dependent DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), and subsequent NAD(+) depletion by oxidative stress may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to posttranslational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65, and FOXO3, thereby enhancing the inflammatory, prosenescent, and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed. Furthermore, we have also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                10 September 2018
                : 13
                : 2821-2832
                Affiliations
                [1 ]School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China, zxzhao@ 123456sdu.edu.cn
                [2 ]Shandong Engineering and Technology Research Center for Jujube Food and Drug, Jinan, People’s Republic of China, zxzhao@ 123456sdu.edu.cn
                [3 ]Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, Jinan, People’s Republic of China, zxzhao@ 123456sdu.edu.cn
                Author notes
                Correspondence: Zhongxi Zhao, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, People’s Republic of China, Tel +86 531 8838 2187, Email zxzhao@ 123456sdu.edu.cn
                Article
                copd-13-2821
                10.2147/COPD.S172579
                6136406
                © 2018 Sun et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Respiratory medicine

                ophiocordyceps sinensis, nucleosides, copd, anti-inflammatory, sirt1, nf-κb/p65

                Comments

                Comment on this article