1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist-Neurokinin Antagonist Peptidomimetics.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.

          Related collections

          Author and article information

          Journal
          Molecules
          Molecules (Basel, Switzerland)
          MDPI AG
          1420-3049
          1420-3049
          Sep 06 2021
          : 26
          : 17
          Affiliations
          [1 ] Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
          [2 ] Institut des Sciences Chimiques de Rennes, Equipe CORINT, UMR 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, CEDEX, 35043 Rennes, France.
          [3 ] Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
          Article
          molecules26175406
          10.3390/molecules26175406
          8434392
          34500841
          67ed7b71-1353-4d94-8b1b-92e0f2baec7d
          History

          peptide,peptidomimetics,δ-opioid receptor,μ-opioid receptor,NK2,NK3,designed multiple ligand,neurokinin,opioid agonist,antinociception

          Comments

          Comment on this article