13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A key factor in oncogenesis is the transport into the nucleus of oncogenic signalling molecules, such as Gli1 (glioma-associated oncogene homologue 1), the central transcriptional activator in the Hedgehog signalling pathway. Little is known, however, how factors such as Gli are transported into the nucleus and how this may be regulated by interaction with other cellular factors, such as the negative regulator suppressor of fused (SuFu). In the present study we show for the first time that nuclear entry of Gli1 is regulated by a unique mechanism through mutually exclusive binding by its nuclear import factor Impβ1 (importin β1) and SuFu. Using quantitative live mammalian cell imaging, we show that nuclear accumulation of GFP-Gli1 fusion proteins, but not of a control protein, is specifically inhibited by co-expression of SuFu. Using a direct binding assay, we show that Impβ1 exhibits a high nanomolar affinity to Gli1, with specific knockdown of Impβ1 expression being able to inhibit Gli1 nuclear accumulation, thus implicating Impβ1 as the nuclear transporter for Gli1 for the first time. SuFu also binds to Gli1 with a high nanomolar affinity, intriguingly being able to compete with Impβ1 for binding to Gli1, through the fact that the sites for SuFu and Impβ1 binding overlap at the Gli1 N-terminus. The results indicate for the first time that the relative intracellular concentrations of SuFu and Impβ1 are likely to determine the localization of Gli1, with implications for its action in cancer, as well as in developmental systems.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Importin alpha: a multipurpose nuclear-transport receptor.

          The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Hedgehog response network: sensors, switches, and routers.

            The Hedgehog (Hh) signaling pathway is intimately linked to cell growth and differentiation, with normal roles in embryonic pattern formation and adult tissue homeostasis and pathological roles in tumor initiation and growth. Recent advances in our understanding of Hh response have resulted from the identification of new pathway components and new mechanisms of action for old pathway components. The most striking new finding is that signal transmission from membrane to cytoplasm proceeds through recruitment, by the seven-transmembrane protein Smoothened, of an atypical kinesin, which routes pathway activation by interaction with other components of a complex that includes the latent zinc finger transcription factor, Ci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway.

              The Hedgehog (Hh) pathway plays important roles during embryogenesis and carcinogenesis. Here, we show that ablation of the mouse Suppressor of fused (Sufu), an intracellular pathway component, leads to embryonic lethality at approximately E9.5 with cephalic and neural tube defects. Fibroblasts derived from Sufu(-/-) embryos showed high Gli-mediated Hh pathway activity that could not be modulated at the level of Smoothened and could only partially be blocked by PKA activation. Despite the robust constitutive pathway activation in the Sufu(-/-) fibroblasts, the GLI1 steady-state localization remained largely cytoplasmic, implying the presence of an effective nuclear export mechanism. Sufu(+/-) mice develop a skin phenotype with basaloid changes and jaw keratocysts, characteristic features of Gorlin syndrome, a human genetic disease linked to enhanced Hh signaling. Our data demonstrate that, in striking contrast to Drosophila, in mammals, Sufu has a central role, and its loss of function leads to potent ligand-independent activation of the Hh pathway.
                Bookmark

                Author and article information

                Journal
                Biochemical Journal
                Biochem. J.
                Portland Press Ltd.
                0264-6021
                1470-8728
                August 01 2014
                August 01 2014
                : 461
                : 3
                : 469-476
                Article
                10.1042/BJ20130709
                24854174
                6850a80c-2956-4616-8262-c06266f31538
                © 2014
                History

                Comments

                Comment on this article