21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Magnetic skyrmions in ferromagnet-superconductor (F/S) heterostructures

      1 , 2 , 1 , 2 , 1 , 2
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Real-space observation of a two-dimensional skyrmion crystal.

          Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Skyrmion Lattice in a Chiral Magnet

            Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Thermodynamically stable magnetic vortex states in magnetic crystals

                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                July 16 2018
                July 16 2018
                : 113
                : 3
                : 032402
                Affiliations
                [1 ]Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia
                [2 ]University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia
                Article
                10.1063/1.5037934
                6872a501-f367-4104-982a-88ebec960b98
                © 2018
                History

                Comments

                Comment on this article