28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review highlights the recent advances and future perspective of minimalistic peptide supramolecular co-assembly for nanotechnology.

          Abstract

          Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembly and application of diphenylalanine-based nanostructures.

            Micro- and nanostructures fabricated from biological building blocks have attracted tremendous attention owing to their potential for application in biology and in nanotechnology. Many biomolecules, including peptides and proteins, can interact and self-assemble into highly ordered supramolecular architectures with functionality. By imitating the processes where biological peptides or proteins are assembled in nature, one can delicately design and synthesize various peptide building blocks composed of several to dozens of amino acids for the creation of biomimetic or bioinspired nanostructured materials. This tutorial review aims to introduce a new kind of peptide building block, the diphenylalanine motif, extracted with inspiration of a pathogenic process towards molecular self-assembly. We highlight recent and current advances in fabrication and application of diphenylalanine-based peptide nanomaterials. We also highlight the preparation of such peptide-based nanostructures as nanotubes, spherical vesicles, nanofibrils, nanowires and hybrids through self-assembly, the improvement of their properties and the extension of their applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Self-Assembly in Natural and Unnatural Systems

                Bookmark

                Author and article information

                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2018
                2018
                : 47
                : 10
                : 3406-3420
                Affiliations
                [1 ]Department of Molecular Microbiology and Biotechnology
                [2 ]George S. Wise Faculty of Life Sciences
                [3 ]Tel Aviv University
                [4 ]Tel Aviv 6997801
                [5 ]Israel
                Article
                10.1039/C7CS00827A
                29498728
                6929a95b-644c-408e-b393-5ec925de4f6f
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article