14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apigenin (4′,5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 μM) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.

            Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The regulation of AP-1 activity by mitogen-activated protein kinases.

              M Karin (1995)
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 June 2020
                July 2020
                : 21
                : 13
                : 4620
                Affiliations
                [1 ]Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; chehwon9798@ 123456kku.ac.kr (C.-H.P.); 124msy@ 123456kku.ac.kr (S.-Y.M.); ryu1hw@ 123456kku.ac.kr (H.-W.Y.)
                [2 ]Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; rainant@ 123456skinami.co.kr (K.K.); cjksy25@ 123456skinami.co.kr (S.K.)
                [3 ]Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; hj4170@ 123456daebongls.co.kr (H.-J.L.); jh.kim2@ 123456daebongls.co.kr (J.-H.K.)
                Author notes
                [* ]Correspondence: yjpark@ 123456kku.ac.kr ; Tel.: +82-43-840-3601
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-8392-4772
                Article
                ijms-21-04620
                10.3390/ijms21134620
                7370139
                32610574
                692e94c1-9756-4377-ad20-aedd2426610f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 June 2020
                : 28 June 2020
                Categories
                Article

                Molecular biology
                anti-inflammation,anti-allergy,apigenin,flavone,rbl-2h3,raw264.7,hacat
                Molecular biology
                anti-inflammation, anti-allergy, apigenin, flavone, rbl-2h3, raw264.7, hacat

                Comments

                Comment on this article