16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Parkinson’s disease is characterized by a continuous loss of neurons within the substantia nigra (SN) leading to a depletion of dopamine. Within the adult SN as a non-neurogenic region, cells with mainly oligodendrocytic precursor characteristics, expressing the neuro-glial antigen-2 (NG2) are continuously generated. Proliferation of these cells is altered in animal models of Parkinson’s disease (PD). Exercise and environmental enrichment re-increase proliferation of NG2 + cells in PD models, however, a possible mechanistic role of dopamine for this increase is not completely understood. NG2 + cells can differentiate into oligodendrocytes but also into microglia and neurons as observed in vitro suggesting a possible hint for endogenous regenerative capacity of the SN. We investigated the role of dopamine in NG2-generation and differentiation in the adult SN stimulated by physical activity and environmental enrichment.

          Results

          We used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-model for dopamine depletion and analysed newborn cells in the SN at different maturation stages and time points depending on voluntary physical activity, enriched environment and levodopa-treatment. We describe an activity- induced increase of new NG2-positive cells and also mature oligodendrocytes in the SN of healthy mice. Running and enriched environment refused to stimulate NG2-generation and oligodendrogenesis in MPTP-mice, an effect which could be reversed by pharmacological levodopa-induced rescue.

          Conclusion

          We suggest dopamine being a key regulator for activity-induced generation of NG2-cells and oliogodendrocytes in the SN as a potentially relevant mechanism in endogenous nigral cellular plasticity.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          More hippocampal neurons in adult mice living in an enriched environment.

          Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CNS stem cells express a new class of intermediate filament protein.

            Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease.

              In idiopathic Parkinson's disease massive cell death occurs in the dopamine-containing substantia nigra. A link between the vulnerability of nigral neurons and the prominent pigmentation of the substantia nigra, though long suspected, has not been proved. This possibility is supported by evidence that N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite MPP+, the latter of which causes destruction of nigral neurons, bind to neuromelanin. We have directly tested this hypothesis by a quantitative analysis of neuromelanin-pigmented neurons in control and parkinsonian midbrains. The findings demonstrate first that the dopamine-containing cell groups of the normal human midbrain differ markedly from each other in the percentage of neuromelanin-pigmented neurons they contain. Second, the estimated cell loss in these cell groups in Parkinson's disease is directly correlated (r = 0.97, P = 0.0057) with the percentage of neuromelanin-pigmented neurons normally present in them. Third, within each cell group in the Parkinson's brains, there is greater relative sparing of non-pigmented than of neuromelanin-pigmented neurons. This evidence suggests a selective vulnerability of the neuromelanin-pigmented subpopulation of dopamine-containing mesencephalic neurons in Parkinson's disease.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2012
                31 October 2012
                : 13
                : 132
                Affiliations
                [1 ]Department of Neurology, Charité University Medicine Berlin; CCM, Charitéplatz 1, Berlin, 10117, Germany
                [2 ]Department of Neurology; Division of Neurodegenerative Diseases, Dresden University of Technology, Dresden, 01307, Germany
                [3 ]Center for Regenerative Therapies Dresden (CRTD), Dresden, 01307, Germany
                [4 ]German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, Dresden, 01307, Germany
                Article
                1471-2202-13-132
                10.1186/1471-2202-13-132
                3504527
                23110504
                6934ad55-cc02-45fb-9e43-9b240ec88acc
                Copyright ©2012 Klaissle et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 August 2012
                : 14 October 2012
                Categories
                Research Article

                Neurosciences
                environmental enrichment,oligodendrocytes,dopamine,physical activity,ng2,substantia nigra

                Comments

                Comment on this article