1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          γ-aminobutyric acid (GABA), as a regulator of many aspects of plant growth, has a pivotal role in improving plant stress resistance. However, few studies have focused on the use of GABA in increasing plants’ resistance to interactional stresses, such as drought-salinity. Therefore, the focus of this study was to examine the effect of foliar application of GABA (0, 10, 20, and 40 mM) on growth indices and physio-biochemical parameters in plants of two pomegranate cultivars, ‘Rabab’ and ‘Atabaki’ exposed to drought, salinity, and drought-salinity.

          Results

          Under stress conditions, the photosynthetic capacity of two pomegranate cultivars, including transpiration rate, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance of water vapour, and mesophyll conductance, was significantly reduced. This resulted in a decrease in root morphological traits such as fresh and dry weight, diameter, and volume, as well as the fresh and dry weight of the aerial part of the plants. However, the application of GABA reversed the negative effects caused by stress treatments on growth parameters and maintained the photosynthetic capacity. GABA application has induced the accumulation of compatible osmolytes, including total soluble carbohydrate, starch, glucose, fructose, and sucrose, in charge of providing energy for cellular defense response against abiotic stresses. Analysis of mineral nutrients has shown that GABA application increases the absorption of potassium, potassium/sodium, magnesium, phosphorus, manganese, zinc, and iron. As concentration increased up to 40 mM, GABA prevented the uptake of toxic ions, sodium and chloride.

          Conclusions

          These findings highlight the potential of GABA as a biostimulant strategy to enhance plant stress tolerance.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Colorimetric Method for Determination of Sugars and Related Substances

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Determination of Starch and Amylose in Vegetables

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants

              Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.
                Bookmark

                Author and article information

                Contributors
                shahsava@shirazu.ac.ir
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                6 November 2023
                6 November 2023
                2023
                : 23
                : 543
                Affiliations
                Department of Horticultural Science, College of Agriculture, Shiraz University, ( https://ror.org/028qtbk54) Shiraz, Iran
                Article
                4568
                10.1186/s12870-023-04568-2
                10626824
                37926819
                69709434-9ff1-41fd-ba39-8b93b41b88b5
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 August 2023
                : 27 October 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Plant science & Botany
                compatible osmolytes,drought-salinity stress,gaba,growth indices,mineral nutrients,photosynthetic capacity,pomegranate

                Comments

                Comment on this article