108
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling transmission of SARS-CoV-2 Omicron in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies.

          Abstract

          Estimates from a new modeling study suggest that current levels of vaccine coverage in China are insufficient to prevent overwhelming the healthcare system, and that, if left untreated, a nationwide Omicron wave could result in up to 1.55 million deaths.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection

            Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months

              Background Despite high vaccine coverage and effectiveness, the incidence of symptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been increasing in Israel. Whether the increasing incidence of infection is due to waning immunity after the receipt of two doses of the BNT162b2 vaccine is unclear. Methods We conducted a 6-month longitudinal prospective study involving vaccinated health care workers who were tested monthly for the presence of anti-spike IgG and neutralizing antibodies. Linear mixed models were used to assess the dynamics of antibody levels and to determine predictors of antibody levels at 6 months. Results The study included 4868 participants, with 3808 being included in the linear mixed-model analyses. The level of IgG antibodies decreased at a consistent rate, whereas the neutralizing antibody level decreased rapidly for the first 3 months with a relatively slow decrease thereafter. Although IgG antibody levels were highly correlated with neutralizing antibody titers (Spearman’s rank correlation between 0.68 and 0.75), the regression relationship between the IgG and neutralizing antibody levels depended on the time since receipt of the second vaccine dose. Six months after receipt of the second dose, neutralizing antibody titers were substantially lower among men than among women (ratio of means, 0.64; 95% confidence interval [CI], 0.55 to 0.75), lower among persons 65 years of age or older than among those 18 to less than 45 years of age (ratio of means, 0.58; 95% CI, 0.48 to 0.70), and lower among participants with immunosuppression than among those without immunosuppression (ratio of means, 0.30; 95% CI, 0.20 to 0.46). Conclusions Six months after receipt of the second dose of the BNT162b2 vaccine, humoral response was substantially decreased, especially among men, among persons 65 years of age or older, and among persons with immunosuppression.
                Bookmark

                Author and article information

                Contributors
                yhj@fudan.edu.cn
                Journal
                Nat Med
                Nat Med
                Nature Medicine
                Nature Publishing Group US (New York )
                1078-8956
                1546-170X
                10 May 2022
                10 May 2022
                2022
                : 28
                : 7
                : 1468-1475
                Affiliations
                [1 ]GRID grid.8547.e, ISNI 0000 0001 0125 2443, School of Public Health, , Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, ; Shanghai, China
                [2 ]GRID grid.8547.e, ISNI 0000 0001 0125 2443, Shanghai Institute of Infectious Disease and Biosecurity, , Fudan University, ; Shanghai, China
                [3 ]GRID grid.453035.4, ISNI 0000 0004 0533 8254, Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, ; Bethesda, MD USA
                [4 ]GRID grid.411377.7, ISNI 0000 0001 0790 959X, Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, , Indiana University School of Public Health, ; Bloomington, IN USA
                Author information
                http://orcid.org/0000-0001-9495-1226
                http://orcid.org/0000-0001-5028-2227
                http://orcid.org/0000-0003-2591-2201
                http://orcid.org/0000-0002-6335-5648
                Article
                1855
                10.1038/s41591-022-01855-7
                9307473
                35537471
                698e9227-8cf5-4b1b-a49f-a6687548763b
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 March 2022
                : 3 May 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100010903, National Science Foundation of China | Key Programme;
                Award ID: 82130093
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

                Medicine
                viral infection,epidemiology
                Medicine
                viral infection, epidemiology

                Comments

                Comment on this article