9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      mei-38 Is Required for Chromosome Segregation During Meiosis in Drosophila Females

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Meiotic chromosome segregation occurs in Drosophila oocytes on an acentrosomal spindle, which raises interesting questions regarding spindle assembly and function. One is how to organize a bipolar spindle without microtubule organizing centers at the poles. Another question is how to orient the chromosomes without kinetochore capture of microtubules that grow from the poles. We have characterized the mei-38 gene in Drosophila and found it may be required for chromosome organization within the karyosome. Nondisjunction of homologous chromosomes occurs in mei-38 mutants primarily at the first meiotic division in females but not in males where centrosomes are present. Most meiotic spindles in mei-38 oocytes are bipolar but poorly organized, and the chromosomes appear disorganized at metaphase. mei-38 encodes a novel protein that is conserved in the Diptera and may be a member of a multigene family. Mei-38 was previously identified (as ssp1) due to a role in mitotic spindle assembly in a Drosophila cell line. MEI-38 protein localizes to a specific population of spindle microtubules, appearing to be excluded from the overlap of interpolar microtubules in the central spindle. We suggest MEI-38 is required for the stability of parallel microtubules, including the kinetochore microtubules.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mitotic spindle assembly in Drosophila S2 cells.

          The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of Drosophila S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gal4 in the Drosophila female germline.

            The modular Gal4 system has proven to be an extremely useful tool for conditional gene expression in Drosophila. One limitation has been the inability of the system to work in the female germline. A modified Gal4 system that works throughout oogenesis is presented here. To achieve germline expression, it was critical to change the basal promoter and 3'-UTR in the Gal4-responsive expression vector (generating UASp). Basal promoters and heterologous 3'-UTRs are often considered neutral, but as shown here, can endow qualitative tissue-specificity to a chimeric transcript. The modified Gal4 system was used to investigate the role of the Drosophila FGF homologue branchless, ligand for the FGF receptor breathless, in border cell migration. FGF signaling guides tracheal cell migration in the embryo. However, misexpression of branchless in the ovary had no effect on border cell migration. Thus border cells and tracheal cells appear to be guided differently. Copyright 1998 Elsevier Science Ireland Ltd. All Rights Reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of zygotic gene expression in Drosophila primordial germ cells.

              Activation of the zygotic genome is a prerequisite for the transition from maternal to zygotic control of development. The onset of zygotic transcription has been well studied in somatic cells, but evidence suggests that it is controlled differently in the germline. In Drosophila, zygotic transcription in the soma has been detected as early as one hour after egg laying (AEL) [1]. In the germline, general RNA synthesis is not detected until 3.5 hours AEL (stage 8) [2] and poly(A)-containing transcripts are not observed in early germ cell nuclei [3]. However, rRNA gene expression has been demonstrated at this time [4]. Therefore, either there is a general, low level activation of the genome in early germ cells, or specific classes of genes, such as those transcribed by RNA polymerase (RNAP) II, are repressed. We addressed this issue by localizing the potent transcriptional activator Gal4-VP16 to the germline, and we find that Gal4-VP16-dependent gene expression is repressed in early germ cells. In addition, localization of germ plasm to the anterior reveals that it is sufficient to repress Bicoid-dependent gene expression. Thus, even in the presence of known transcriptional activators, RNAP II dependent gene expression is actively repressed in early germ cells. Furthermore, once the germ cell genome is activated, we find that vasa is expressed specifically in germ cells. This expression does not require proper patterning of the soma, indicating that it is likely to be controlled by the germ plasm.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                September 15 2008
                September 2008
                September 2008
                August 30 2008
                : 180
                : 1
                : 61-72
                Article
                10.1534/genetics.108.091140
                2535709
                18757915
                6a01bbae-5c19-43cd-9a57-676651ffabb8
                © 2008
                History

                Comments

                Comment on this article