14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in the firing pattern of midbrain dopamine neurons are thought to encode information for certain types of reward-related learning. In particular, the burst pattern of firing is predicted to result in more efficient dopamine release at target loci, which could underlie changes in synaptic plasticity. In this study, the effects of dopamine on the firing patterns of dopaminergic neurons in vivo and their electrophysiological characteristics in vitro were examined by using a genetic dopamine-deficient (DD) mouse model. Extracellular recordings in vivo showed that, although the firing pattern of dopamine neurons in normal mice included bursting activity, DD mice recordings showed only a single-spike pattern of activity with no bursts. Bursting was restored in DD mice after systemic administration of the dopamine precursor, L-3,4-dihydroxyphenylalanine (L-dopa). Whole-cell recordings in vitro demonstrated that the basic electrophysiology and pharmacology of dopamine neurons were identical between DD and control mice, except that amphetamine did not elicit a hyperpolarizing current in slices from DD mice. These data suggest that endogenously released dopamine plays a critical role in the afferent control of dopamine neuron bursting activity and that this control is exerted via a network feedback mechanism.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Dopamine neurons report an error in the temporal prediction of reward during learning.

          Many behaviors are affected by rewards, undergoing long-term changes when rewards are different than predicted but remaining unchanged when rewards occur exactly as predicted. The discrepancy between reward occurrence and reward prediction is termed an 'error in reward prediction'. Dopamine neurons in the substantia nigra and the ventral tegmental area are believed to be involved in reward-dependent behaviors. Consistent with this role, they are activated by rewards, and because they are activated more strongly by unpredicted than by predicted rewards they may play a role in learning. The present study investigated whether monkey dopamine neurons code an error in reward prediction during the course of learning. Dopamine neuron responses reflected the changes in reward prediction during individual learning episodes; dopamine neurons were activated by rewards during early trials, when errors were frequent and rewards unpredictable, but activation was progressively reduced as performance was consolidated and rewards became more predictable. These neurons were also activated when rewards occurred at unpredicted times and were depressed when rewards were omitted at the predicted times. Thus, dopamine neurons code errors in the prediction of both the occurrence and the time of rewards. In this respect, their responses resemble the teaching signals that have been employed in particularly efficient computational learning models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A cellular mechanism of reward-related learning.

            Positive reinforcement helps to control the acquisition of learned behaviours. Here we report a cellular mechanism in the brain that may underlie the behavioural effects of positive reinforcement. We used intracranial self-stimulation (ICSS) as a model of reinforcement learning, in which each rat learns to press a lever that applies reinforcing electrical stimulation to its own substantia nigra. The outputs from neurons of the substantia nigra terminate on neurons in the striatum in close proximity to inputs from the cerebral cortex on the same striatal neurons. We measured the effect of substantia nigra stimulation on these inputs from the cortex to striatal neurons and also on how quickly the rats learned to press the lever. We found that stimulation of the substantia nigra (with the optimal parameters for lever-pressing behaviour) induced potentiation of synapses between the cortex and the striatum, which required activation of dopamine receptors. The degree of potentiation within ten minutes of the ICSS trains was correlated with the time taken by the rats to learn ICSS behaviour. We propose that stimulation of the substantia nigra when the lever is pressed induces a similar potentiation of cortical inputs to the striatum, positively reinforcing the learning of the behaviour by the rats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic.

              Mice unable to synthesize dopamine (DA) specifically in dopaminergic neurons were created by inactivating the tyrosine hydroxylase (TH) gene then by restoring TH function in noradrenergic cells. These DA-deficient (DA-/-) mice were born at expected frequency but became hypoactive and stopped feeding a few weeks after birth. Midbrain dopaminergic neurons, their projections, and most characteristics of their target neurons in the striatum appeared normal. Within a few minutes of being injected with L-dihdroxyphenylalanine (L-DOPA), the product of TH, the DA-/- mice became more active and consumed more food than control mice. With continued administration of L-DOPA, nearly normal growth was achieved. These studies indicate that DA is essential for movement and feeding, but is not required for the development of neural circuits that control these behaviors.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 04 2003
                February 25 2003
                March 04 2003
                : 100
                : 5
                : 2866-2871
                Article
                10.1073/pnas.0138018100
                151432
                12604788
                6a10e04d-9919-4317-a906-da3d5b911ab9
                © 2003
                History

                Comments

                Comment on this article