74
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable.

          Methods

          Zonation of glutamine metabolism was investigated in the bivascularly perfused rat liver with [U- 14C]glutamine infusion (0.6 mM) into the portal vein (antegrade perfusion) or into the hepatic vein (retrograde perfusion).

          Results

          Ammonia infusion into the hepatic artery in retrograde and antegrade perfusion allowed to promote glutamine metabolism in the periportal region and in the whole liver parenchyma, respectively. The results revealed that the space-normalized glutamine uptake, indicated by 14CO 2 production, gluconeogenesis, lactate production and the associated oxygen uptake, predominates in the periportal region. Periportal predominance was especially pronounced for gluconeogenesis. Ureogenesis, however, tended to be uniformly distributed over the whole liver parenchyma at low ammonia concentrations (up to 1.0 mM); periportal predominance was found only at ammonia concentrations above 1 mM. The proportions between the carbon and nitrogen fluxes in periportal cells are not the same along the liver acinus.

          Conclusions

          In conclusion, the results of the present work indicate that the glutaminase activity in periportal hepatocytes is not the rate-controlling step of the glutamine-derived nitrogen flow through the urea cycle. The findings corroborate recent work indicating that ureogenesis is also an important ammonia-detoxifying mechanism in cells situated downstream to the periportal region.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Differential gene expression in periportal and perivenous mouse hepatocytes.

          Hepatocytes located in the periportal and perivenous zones of the liver lobule show remarkable differences in the levels and activities of various enzymes and other proteins. To analyze global gene expression patterns of periportal and perivenous hepatocytes, enriched populations of the two cell types were isolated by combined collagenase/digitonin perfusion from mouse liver and used for microarray analysis. In total, 198 genes and expressed sequences were identified that demonstrated a >/= 2-fold difference in expression between hepatocytes from the two different zones of the liver. A subset of 20 genes was additionally analyzed by real-time RT-PCR, validating the results obtained by the microarray analysis. Several of the differentially expressed genes encoded key enzymes of intermediary metabolism, including those involved in glycolysis and gluconeogenesis, fatty acid degradation, cholesterol and bile acid metabolism, amino acid degradation and ammonia utilization. In addition, several enzymes of phase I and phase II of xenobiotic metabolism were differentially expressed in periportal and perivenous hepatocytes. Our results confirm previous findings on metabolic zonation in liver, and extend our knowledge of the regulatory mechanisms at the transcriptional level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of glutamine in human carbohydrate metabolism in kidney and other tissues.

            Glutamine is the most abundant amino acid in the human body and is involved in more metabolic processes than any other amino acid. Until recently, the understanding of many aspects of glutamine metabolism was based on animal and in vitro data. However, recent studies using isotopic and balance techniques have greatly advanced the understanding of glutamine metabolism in humans and its role in glucose metabolism in the kidney and other tissues. There is now evidence that in postabsorptive humans, glutamine is an important glucose precursor and makes a significant contribution to the addition of new carbon to the glucose carbon pool. The importance of alanine for gluconeogenesis, viewed in terms of the addition of new carbons, is less than previously assumed. It appears that glutamine is predominantly a renal gluconeogenic substrate, whereas alanine gluconeogenesis is essentially confined to the liver. As shown recently, renal gluconeogenesis contributes 20 to 25% to whole-body glucose production. Moreover, glutamine has been shown not only to stimulate net muscle glycogen storage but also to stimulate gluconeogenesis in normal humans. Finally, in humans with type II diabetes, conversion of glutamine to glucose is increased (more so than that of alanine). The available evidence on the hormonal regulation of glutamine gluconeogenesis in kidney and liver and its alterations under pathological conditions are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitrogen metabolism in liver: structural and functional organization and physiological relevance.

                Bookmark

                Author and article information

                Journal
                J Biomed Sci
                Journal of Biomedical Science
                BioMed Central
                1021-7770
                1423-0127
                2010
                7 January 2010
                : 17
                : 1
                : 1
                Affiliations
                [1 ]Laboratory of Liver Metabolism, Biochemistry Department, University of Maringá, Maringá, Brazil
                Article
                1423-0127-17-1
                10.1186/1423-0127-17-1
                2843605
                20055990
                6a3f59d8-ceb3-40c4-9478-e68646f1ab1e
                Copyright ©2010 Comar et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 May 2009
                : 7 January 2010
                Categories
                Research

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article