18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The gill parasite Paramoeba perurans compromises aerobic scope, swimming capacity and ion balance in Atlantic salmon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A cosmopolitan non-species specific gill parasite associated with finfish aquaculture and high temperatures compromises gill functionality and swimming abilities in Atlantic salmon. Interactions with environmental warming are expected to amplify the pathophysiology of this parasite.

          Abstract

          The parasitic amoeba Paramoeba perurans is an aetiological agent of amoebic gill disease (AGD), a serious problem in seawater salmonid aquaculture globally. Other finfish species are also infected and infection events may be associated with periods of unusual high temperatures. Currently little is known about the impact of AGD on wild fish, but in a time with global warming and increasing aquaculture production this potential threat could be on the rise. A better understanding of the pathophysiology of infected fish is therefore warranted. In this study, groups of Atlantic salmon with and without AGD were tested in a large swim tunnel respirometer in seawater at 13°C to assess oxygen uptake, swimming capacity and blood parameters. Standard metabolic rates were similar between groups, but the maximum rate of oxygen uptake was drastically reduced in infected fish, which resulted in a smaller aerobic scope (AS) of 203 mg O 2 kg −1 h −1 compared to 406 mg O 2 kg −1 h −1 in healthy fish. The critical swimming speed was 2.5 body lengths s −1 in infected fish and 3.0 body lengths s −1 in healthy ones. Furthermore, AGD fish had lower haematocrit and [haemoglobin], but similar condition factor compared to healthy fish. Prior to swim trials infected fish had higher plasma osmolality, elevated plasma [Na +], [Cl -] and [cortisol], indicating reduced capacity to maintain ionic homoeostasis as well as chronic stress during routine conditions. These results demonstrate that AGD compromises gill function both in terms of gas exchange and ion regulation, and consequently the capacity for aerobic activity is reduced. Reduced AS due to the P. perurans infections is likely to interfere with appetite, growth and overall survival, even more so in the context of a warmer and more hypoxic future.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecology. Physiology and climate change.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.

            The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Additive threats from pathogens, climate and land-use change for global amphibian diversity.

              Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature. The causes of these declines are a matter of continued research, but probably include climate change, land-use change and spread of the pathogenic fungal disease chytridiomycosis. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas are disproportionately more affected by one or multiple threat factors than areas with low richness. Amphibian declines are likely to accelerate in the twenty-first century, because multiple drivers of extinction could jeopardize their populations more than previous, mono-causal, assessments have suggested.
                Bookmark

                Author and article information

                Journal
                Conserv Physiol
                Conserv Physiol
                conphys
                Conservation Physiology
                Oxford University Press
                2051-1434
                2017
                29 November 2017
                29 November 2017
                : 5
                : 1
                : cox066
                Affiliations
                [1 ] Institute of Marine Research, 5984 Matredal, Norway
                [2 ] Department of Biology, University of Bergen , 5020 Bergen, Norway
                Author notes
                [* ] Corresponding author: Malthe Hvas, Institute of Marine Research, 5984 Matredal, Norway. Tel: +47 48 88 93 21. Email: malthe.hvas@ 123456imr.no
                Editor: Steven Cooke
                Article
                cox066
                10.1093/conphys/cox066
                5710617
                6a6fe925-044e-49b3-87b0-55d1aa83d44f
                © The Author 2017. Published by Oxford University Press and the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 September 2017
                : 24 October 2017
                : 6 November 2017
                Page count
                Pages: 12
                Funding
                Funded by: Norwegian Research Council 10.13039/501100005416
                Award ID: 237790
                Categories
                Research Article

                amoebic gill disease,ucrit,respirometry,stress physiology,aquaculture

                Comments

                Comment on this article