0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates

      , , , , , ,
      Frontiers in Materials
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, PET plastic waste, which is a type of polymer commonly used in the manufacture of plastic bottles, has been incorporated into concrete by partially replacing the natural fine aggregate. An experimental study was conducted by casting and testing 90 concrete cylinders and 54 concrete cubes. A concrete mixture was designed in which the natural fine aggregate was substituted partially with PET plastic waste (PW) at a ratio of 0%, 25%, and 50%, with various w/c ratios of .40, .45, and .55. Physical, mechanical, and durability properties were assessed. The downside of the test results show degradation in each of the following characteristics: slump, compressive strength, splitting tensile strength, ultrasonic pulse velocity, water absorption, and porosity. The degradation of these characteristics increased with the increase in the volume of plastic aggregate (PA) and the w/c ratio. While the positive side of the results showed that with the increase of the PA volume and the w/c ratio, the fresh and dry densities decreased further, and by using 50% PET, the dry density became below 2000 kg/m 3. Therefore, it is classified as lightweight concrete. Moreover, the fracture of concrete changed from brittle to more ductile compared to control concrete. Also, the thermal conductivity decreased significantly (11%–47%), and by using 50% of PET, the thermal conductivity became less than .71 W/mK, and accordingly, classified as a bearing insulator.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          Effects of waste PET bottles aggregate on the properties of concrete

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plastic wastes biodegradation: Mechanisms, challenges and future prospects.

            The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

              This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.
                Bookmark

                Author and article information

                Journal
                Frontiers in Materials
                Front. Mater.
                Frontiers Media SA
                2296-8016
                January 13 2023
                January 13 2023
                : 10
                Article
                10.3389/fmats.2023.1101146
                6a773db6-55ae-425d-86b4-b408d935a959
                © 2023

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article