8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toll-Like Receptor 4 Signaling in High Mobility Group Box-1 Protein 1 Mediated the Suppression of Regulatory T-Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Treg cells play a central role in the suppression of immune response, and their suppressive capacity can be modulated by toll-like receptor (TLR) ligands. However, the detailed pathway of TLR ligand modulation is still unknown. The present study aimed to evaluate the effect of the high mobility group box-1 protein 1 (HMGB1) and lipopolysaccharide (LPS) on Treg cells through TLR4 signaling.

          Material/Methods

          Treg cells were purified from healthy human peripheral blood mononuclear cells (PBMCs) by magnetic-bead activity cell sorting (MACS), blocked by anti-TLR4 monoclonal antibody, and then incubated with different concentration of LPS or HMGB1. The level of gene expression of IL-1β, IL-10, IFN-γ, and TGF-β were detected using quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), and the proliferation of Treg cells after treating by LPS and HMGB1 was analyzed by flow cytometry. The NF-κB expression in Treg cells was examined by Western blotting.

          Results

          LPS treated CD4 CD25 Treg cells directly increased the expression of IL-1β and IL-10 and decreased the expression of IFN-γ and TGF-β. However, HMGB1 treatment resulted in a marked decreased expression of IL-1β, IL-10, IFN-γ, and TGF-β. The proliferation of CD4 + T cells was significantly inhibited by Treg cells in the LPS treatment group, but weaken in the HMGB1 treatment group. These data suggest that HMGB1 and LPS stimulation could downregulate the expression NF-κB p65 in cytoplasmic proteins and increase the expression in nuclear proteins, thus leading to modulation of IL-1β, IL-10, IFN-γ, and TGF-β expression; moreover, the suppressive function of Treg cells could be regulated by TLR4.

          Conclusions

          TLR4 signaling in HMGB1 mediated the suppressive function of Treg cells through the activation of the NF-κB pathway.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Are innate immune signaling pathways in plants and animals conserved?

          Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review

            During the course of evolution, multicellular organisms have been orchestrated with an efficient and versatile immune system to counteract diverse group of pathogenic organisms. Pathogen recognition is considered as the most critical step behind eliciting adequate immune response during an infection. Hitherto Toll-like receptors (TLRs), especially the surface ones viz. TLR2 and TLR4 have gained immense importance due to their extreme ability of identifying distinct molecular patterns from invading pathogens. These pattern recognition receptors (PRRs) not only act as innate sensor but also shape and bridge innate and adaptive immune responses. In addition, they also play a pivotal role in regulating the balance between Th1 and Th2 type of response essential for the survivability of the host. In this work, major achievements rather findings made on the typical signalling and immunopathological attributes of TLR2 and TLR4 mediated host response against the major infectious diseases have been reviewed. Infectious diseases like tuberculosis, trypanosomiasis, malaria, and filariasis are still posing myriad threat to mankind. Furthermore, increasing resistance of the causative organisms against available therapeutics is also an emerging problem. Thus, stimulation of host immune response with TLR2 and TLR4 agonist can be the option of choice to treat such diseases in future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory T Cells Selectively Express Toll-like Receptors and Are Activated by Lipopolysaccharide

              Regulatory CD4 T cells (Treg) control inflammatory reactions to commensal bacteria and opportunist pathogens. Activation of Treg functions during these processes might be mediated by host-derived proinflammatory molecules or directly by bacterial products. We tested the hypothesis that engagement of germline-encoded receptors expressed by Treg participate in the triggering of their function. We report that the subset of CD4 cells known to exert regulatory functions in vivo (CD45RBlow CD25+) selectively express Toll-like receptors (TLR)-4, -5, -7, and -8. Exposure of CD4+ CD25+ cells to the TLR-4 ligand lipopolysaccharide (LPS) induces up-regulation of several activation markers and enhances their survival/proliferation. This proliferative response does not require antigen-presenting cells and is augmented by T cell receptor triggering and interleukin 2 stimulation. Most importantly, LPS treatment increases CD4+ CD25+ cell suppressor efficiency by 10-fold and reveals suppressive activity in the CD4+ CD45RBlow CD25− subset that when tested ex-vivo, scores negative. Moreover, LPS-activated Treg efficiently control naive CD4 T cell–dependent wasting disease. These findings provide the first evidence that Treg respond directly to proinflammatory bacterial products, a mechanism that likely contributes to the control of inflammatory responses.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2017
                18 January 2017
                : 23
                : 300-308
                Affiliations
                [1 ]School of Medical Science, Hubei University for Nationalities, Enshi, Hubei, P.R. China
                [2 ]Medical School, China Three Gorges University, Yichang, Hubei, P.R. China
                [3 ]Department of Nuclear Medicine, Chongqing Three Gorges Central Hospital, Wanzhou, Chongqing, P.R. China
                Author notes
                Corresponding Authors: Jiajun Wang, e-mail: wangjiajunzhch@ 123456126.com ; Hu Wang, e-mail: biomed_wang@ 123456yahoo.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                [*]

                These authors contributed equally to this work

                Article
                902081
                10.12659/MSM.902081
                5267620
                28096525
                6a925f17-d7c9-4b8c-a55f-915ff0437bb9
                © Med Sci Monit, 2017

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

                History
                : 24 October 2016
                : 30 November 2016
                Categories
                Molecular Biology

                high mobility group proteins,t-lymphocytes, regulatory,toll-like receptors

                Comments

                Comment on this article