148
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Harnessing Traction-Mediated Manipulation of the Cell-Matrix Interface to Control Stem Cell Fate

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular matrix mechanics affect stem cell fate in 3D micro-environments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitment of mesenchymal stem cell (MSC) populations changes in response to the rigidity of 3D micro-environments, with osteogenesis occurring predominantly at 11–30 kPa. In contrast to previous 2D work, however, cell fate was not correlated with morphology. Instead, matrix stiffness regulated integrin binding as well as reorganization of adhesion ligands on the nanoscale, both of which were traction-dependent and correlated with osteogenic commitment of MSC populations. These findings suggest that cells interpret changes in the physical properties of adhesion substrates as changes in adhesion ligand presentation, and that cells themselves can be harnessed as tools to mechanically process materials into structures that feedback to manipulate their fate.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Capturing complex 3D tissue physiology in vitro.

          The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell locomotion and focal adhesions are regulated by substrate flexibility.

            Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular mechanotransduction: putting all the pieces together again.

              Analysis of cellular mechanotransduction, the mechanism by which cells convert mechanical signals into biochemical responses, has focused on identification of critical mechanosensitive molecules and cellular components. Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other structures and signaling molecules have all been shown to contribute to the mechanotransduction response. However, little is known about how these different molecules function within the structural context of living cells, tissues, and organs to produce the orchestrated cellular behaviors required for mechanosensation, embryogenesis, and physiological control. Recent work from a wide range of fields reveals that organ, tissue, and cell anatomy are as important for mechanotransduction as individual mechanosensitive proteins and that our bodies use structural hierarchies (systems within systems) composed of interconnected networks that span from the macroscale to the nanoscale in order to focus stresses on specific mechanotransducer molecules. The presence of isometric tension (prestress) at all levels of these multiscale networks ensures that various molecular scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. Future research in this area will therefore require analysis, understanding, and modeling of tensionally integrated (tensegrity) systems of mechanochemical control.
                Bookmark

                Author and article information

                Journal
                101155473
                30248
                Nat Mater
                Nat Mater
                Nature materials
                1476-1122
                3 August 2010
                25 April 2010
                June 2010
                01 December 2010
                : 9
                : 6
                : 518-526
                Affiliations
                [1 ]Harvard University School of Engineering and Applied Sciences
                [2 ]Harvard-MIT Division of Health Sciences and Technology
                [3 ]Wyss Institute for Biologically Inspired Engineering
                [4 ]Programs in Oral and Maxillofacial Pathology, Leder Human Biology and Translational Medicine and Biological Sciences in Dental Medicine, Harvard School of Dental Medicine & Brigham and Women's Hospital
                Author notes
                [5]

                Current affiliation: InCytu Inc.

                Article
                NIHMS183313
                10.1038/nmat2732
                2919753
                20418863
                6bc84b02-fc95-445b-b803-70445314da45

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Dental and Craniofacial Research : NIDCR
                Award ID: R37 DE013033-13 || DE
                Categories
                Article

                Materials science
                mesenchymal stem cell (msc),förster resonance energy transfer (fret),mechanotransduction,extracellular matrix (ecm),hydrogel

                Comments

                Comment on this article