40
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hexavalent chromium [Cr(VI)] is a priority pollutant causing serious environmental issues. Microbial reduction provides an alternative strategy for Cr(VI) remediation. The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, was employed to study Cr(VI) reduction and toxicity in this work. To understand the effect of membrane cytochromes on Cr(VI) response, a comparative protein profile analysis from S. oneidensis MR-1 wild type and its mutant of deleting OmcA and MtrC (△omcA/mtrC) was conducted using two-dimensional electrophoresis (2-DE) technology. The 2-DE patterns were compared, and the proteins with abundant changes of up to twofold in the Cr(VI) treatment were detected. Using mass spectrometry, 38 and 45 differentially abundant proteins were identified in the wild type and the mutant, respectively. Among them, 25 proteins were shared by the two strains. The biological functions of these identified proteins were analyzed. Results showed that Cr(VI) exposure decreased the abundance of proteins involved in transcription, translation, pyruvate metabolism, energy production, and function of cellular membrane in both strains. There were also significant differences in protein expressions between the two strains under Cr(VI) treatment. Our results suggest that OmcA/MtrC deletion might result in the Cr(VI) toxicity to outer membrane and decrease assimilation of lactate, vitamin B12, and cystine. When carbohydrate metabolism was inhibited by Cr(VI), leucine and sulfur metabolism may act as the important compensatory mechanisms in the mutant. Furthermore, the mutant may regulate electron transfer in the inner membrane and periplasm to compensate for the deletion of OmcA and MtrC in Cr(VI) reduction.

          Related collections

          Author and article information

          Journal
          Appl. Microbiol. Biotechnol.
          Applied microbiology and biotechnology
          Springer Nature
          1432-0614
          0175-7598
          Dec 2014
          : 98
          : 23
          Affiliations
          [1 ] Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
          Article
          10.1007/s00253-014-6143-3
          25341401
          6c9ddbd8-748c-4b43-9430-08af4dde1cba
          History

          Comments

          Comment on this article