5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone regeneration or replacement has been proved to be one of the most effective methods available for the treatment of bone defects caused by different musculoskeletal disorders. However, the great contradiction between the large demand for clinical therapies and the insufficiency and deficiency of natural bone grafts has led to an urgent need for the development of synthetic bone graft substitutes. Bone tissue engineering has shown great potential in the construction of desired bone grafts, despite the many challenges that remain to be faced before safe and reliable clinical applications can be achieved. Graphene, with outstanding physical, chemical and biological properties, is considered a highly promising material for ideal bone regeneration and has attracted broad attention. In this review, we provide an introduction to the properties of graphene and its derivatives. In addition, based on the analysis of bone regeneration processes, interesting findings of graphene-based materials in bone regenerative medicine are analyzed, with special emphasis on their applications as scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages, challenges, and future prospects of their application in bone regenerative medicine are discussed.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Measurement of the elastic properties and intrinsic strength of monolayer graphene.

          We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospinning: applications in drug delivery and tissue engineering.

            Despite its long history and some preliminary work in tissue engineering nearly 30 years ago, electrospinning has not gained widespread interest as a potential polymer processing technique for applications in tissue engineering and drug delivery until the last 5-10 years. This renewed interest can be attributed to electrospinning's relative ease of use, adaptability, and the ability to fabricate fibers with diameters on the nanometer size scale. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro to nanoscale topography and high porosity similar to the natural extracellular matrix (ECM). The inherently high surface to volume ratio of electrospun scaffolds can enhance cell attachment, drug loading, and mass transfer properties. Various materials can be electrospun including: biodegradable, non-degradable, and natural materials. Electrospun fibers can be oriented or arranged randomly, giving control over both the bulk mechanical properties and the biological response to the scaffold. Drugs ranging from antibiotics and anticancer agents to proteins, DNA, and RNA can be incorporated into electrospun scaffolds. Suspensions containing living cells have even been electrospun successfully. The applications of electrospinning in tissue engineering and drug delivery are nearly limitless. This review summarizes the most recent and state of the art work in electrospinning and its uses in tissue engineering and drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical properties and the hierarchical structure of bone.

              Detailed descriptions of the structural features of bone abound in the literature; however, the mechanical properties of bone, in particular those at the micro- and nano-structural level, remain poorly understood. This paper surveys the mechanical data that are available, with an emphasis on the relationship between the complex hierarchical structure of bone and its mechanical properties. Attempts to predict the mechanical properties of bone by applying composite rule of mixtures formulae have been only moderately successful, making it clear that an accurate model should include the molecular interactions or physical mechanisms involved in transfer of load across the bone material subunits. Models of this sort cannot be constructed before more information is available about the interactions between the various organic and inorganic components. Therefore, further investigations of mechanical properties at the 'materials level', in addition to the studies at the 'structural level' are needed to fill the gap in our present knowledge and to achieve a complete understanding of the mechanical properties of bone.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                29 September 2021
                2021
                : 9
                : 734688
                Affiliations
                [ 1 ]Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
                [ 2 ]Chinese PLA Medical School, Beijing, China
                [ 3 ]Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
                [ 4 ]University of Chinese Academy of Sciences, Beijing, China
                Author notes

                Edited by: Dong Jiang, Peking University Third Hospital, China

                Reviewed by: Yihong Lei, General Hospital of Southern Theatre Command of People’s Liberation Army, China

                Ruoxi Liu, Second Affiliated Hospital of Xi’an Jiaotong University, China

                Bingbing Xu, Peking University Third Hospital, China

                *Correspondence: Xing Wang, wangxing@ 123456iccas.ac.cn ; Peifu Tang, peifutang_301@ 123456163.com ; Zheng Wang, wzspine@ 123456163.com
                [ † ]

                These authors have contributed equally to this work

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                734688
                10.3389/fbioe.2021.734688
                8511325
                6cb0f1ad-e6f3-4ac9-8b50-bc72f5ae860f
                Copyright © 2021 Cheng, Liu, Wu, Liu, Li, Wang, Tang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 July 2021
                : 14 September 2021
                Categories
                Bioengineering and Biotechnology
                Review

                graphene,bone tissue engineering,scaffolds,membranes,coatings

                Comments

                Comment on this article