0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature

      , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Raman Spectroscopy has long been anticipated to augment clinical decision making, such as classifying oncological samples. Unfortunately, the complexity of Raman data has thus far inhibited their routine use in clinical settings. Traditional machine learning models have been used to help exploit this information, but recent advances in deep learning have the potential to improve the field. However, there are a number of potential pitfalls with both traditional and deep learning models. We conduct a literature review to ascertain the recent machine learning methods used to classify cancers using Raman spectral data. We find that while deep learning models are popular, and ostensibly outperform traditional learning models, there are many methodological considerations which may be leading to an over-estimation of performance; primarily, small sample sizes which compound sub-optimal choices regarding sampling and validation strategies. Amongst several recommendations is a call to collate large benchmark Raman datasets, similar to those that have helped transform digital pathology, which researchers can use to develop and refine deep learning models.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews

          The methods and results of systematic reviews should be reported in sufficient detail to allow users to assess the trustworthiness and applicability of the review findings. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was developed to facilitate transparent and complete reporting of systematic reviews and has been updated (to PRISMA 2020) to reflect recent advances in systematic review methodology and terminology. Here, we present the explanation and elaboration paper for PRISMA 2020, where we explain why reporting of each item is recommended, present bullet points that detail the reporting recommendations, and present examples from published reviews. We hope that changes to the content and structure of PRISMA 2020 will facilitate uptake of the guideline and lead to more transparent, complete, and accurate reporting of systematic reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A survey on Image Data Augmentation for Deep Learning

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge

              The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive “atlas” of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                June 2022
                June 17 2022
                : 12
                : 6
                : 1491
                Article
                10.3390/diagnostics12061491
                35741300
                6d2f3228-2231-4507-b3c2-74ff9b6c75d6
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content363

                Cited by5

                Most referenced authors971