8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation.

          Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications.

            Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abusable designer drugs. In the early 2000s, SC became popular as "legal highs" under brand names such as Spice and K2, in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pharmacologic and clinical effects of medical cannabis.

              Cannabis, or marijuana, has been used for medicinal purposes for many years. Several types of cannabinoid medicines are available in the United States and Canada. Dronabinol (schedule III), nabilone (schedule II), and nabiximols (not U.S. Food and Drug Administration approved) are cannabis-derived pharmaceuticals. Medical cannabis or medical marijuana, a leafy plant cultivated for the production of its leaves and flowering tops, is a schedule I drug, but patients obtain it through cannabis dispensaries and statewide programs. The effect that cannabinoid compounds have on the cannabinoid receptors (CB(1) and CB(2) ) found in the brain can create varying pharmacologic responses based on formulation and patient characteristics. The cannabinoid Δ(9) -tetrahydrocannabinol has been determined to have the primary psychoactive effects; the effects of several other key cannabinoid compounds have yet to be fully elucidated. Dronabinol and nabilone are indicated for the treatment of nausea and vomiting associated with cancer chemotherapy and of anorexia associated with weight loss in patients with acquired immune deficiency syndrome. However, pain and muscle spasms are the most common reasons that medical cannabis is being recommended. Studies of medical cannabis show significant improvement in various types of pain and muscle spasticity. Reported adverse effects are typically not serious, with the most common being dizziness. Safety concerns regarding cannabis include the increased risk of developing schizophrenia with adolescent use, impairments in memory and cognition, accidental pediatric ingestions, and lack of safety packaging for medical cannabis formulations. This article will describe the pharmacology of cannabis, effects of various dosage formulations, therapeutics benefits and risks of cannabis for pain and muscle spasm, and safety concerns of medical cannabis use. © 2013 Pharmacotherapy Publications, Inc.
                Bookmark

                Author and article information

                Journal
                Archives of Pharmacal Research
                Arch. Pharm. Res.
                Springer Science and Business Media LLC
                0253-6269
                1976-3786
                July 2018
                July 23 2018
                July 2018
                : 41
                : 7
                : 691-710
                Article
                10.1007/s12272-018-1055-x
                30039377
                6d848af8-4f6a-48bf-b89a-3e0f9df9bc8b
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article