31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural killer cells and natural killer T cells in Lyme arthritis

      research-article
      1 , 2 , 1 , 1 ,
      Arthritis Research & Therapy
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity.

          Methods

          We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses.

          Results

          In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB ( P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less ( P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent ( P = 0.003).

          Conclusions

          In patients with antibiotic-responsive arthritis, the high percentage of activated, IFN-γ-producing CD56bright NK cells in SF and the presence of iNKT cells suggest that these cells still have a role in spirochetal killing late in the illness. In patients with antibiotic-refractory arthritis, the frequencies of IFN-γ-producing CD56bright and CD56dim NK cells remained high in SF, even after spirochetal killing, suggesting that these cells contribute to excessive inflammation and immune dysregulation in joints, and iNKT cells, which may have immunomodulatory effects, were often absent.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          CD56bright natural killer (NK) cells: an important NK cell subset.

          Human natural killer (NK) cells can be subdivided into different populations based on the relative expression of the surface markers CD16 and CD56. The two major subsets are CD56(bright) CD16(dim/) (-) and CD56(dim) CD16(+), respectively. In this review, we will focus on the CD56(bright) NK cell subset. These cells are numerically in the minority in peripheral blood but constitute the majority of NK cells in secondary lymphoid tissues. They are abundant cytokine producers but are only weakly cytotoxic before activation. Recent data suggest that under certain conditions, they have immunoregulatory properties, and that they are probably immediate precursors of CD56(dim) NK cells. CD56(bright) NK cell percentages are expanded or reduced in a certain number of diseases, but the significance of these variations is not yet clear.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD1: antigen presentation and T cell function.

            This review summarizes the major features of CD1 genes and proteins, the patterns of intracellular trafficking of CD1 molecules, and how they sample different intracellular compartments for self- and foreign lipids. We describe how lipid antigens bind to CD1 molecules with their alkyl chains buried in hydrophobic pockets and expose their polar lipid headgroup whose fine structure is recognized by the TCR of CD1-restricted T cells. CD1-restricted T cells carry out effector, helper, and adjuvant-like functions and interact with other cell types including macrophages, dendritic cells, NK cells, T cells, and B cells, thereby contributing to both innate and adaptive immune responses. Insights gained from mice and humans now delineate the extensive range of diseases in which CD1-restricted T cells play important roles and reveal differences in the role of CD1a, CD1b, and CD1c in contrast to CD1d. Invariant TCR alpha chains, self-lipid reactivity, and rapid effector responses empower a subset of CD1d-restricted T cells (NKT cells) to have unique effector functions without counterpart among MHC-restricted T cells. This review describes the function of CD1-restricted T cells in antimicrobial responses, antitumor immunity, and in regulating the balance between tolerance and autoimmunity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lyme disease.

              A Steere (2001)
                Bookmark

                Author and article information

                Contributors
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2013
                7 November 2013
                : 15
                : 6
                : R183
                Affiliations
                [1 ]Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, CNY 149/8301, 55 Fruit St, Boston, MA 02114, USA
                [2 ]Current address for K Katchar is Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139, USA
                Article
                ar4373
                10.1186/ar4373
                3978756
                24286535
                6d8b9768-5faf-4e5b-b1cd-b930cdec38ca
                Copyright © 2013 Katchar et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 June 2013
                : 11 October 2013
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article