14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species.

      Virulence
      Animals, Antibodies, Fungal, immunology, Fungal Proteins, genetics, metabolism, Humans, Male, Mice, Mice, Inbred BALB C, Phylogeny, Protein Transport, Sporothrix, classification, pathogenicity, Sporotrichosis, microbiology, Virulence

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comparative study about protein secretion, immunogenicity and virulence was performed in order to characterize and to compare eight Sporothrix schenckii sensu stricto isolates. For virulence characterization, a murine model, based on survival assay and CFU counting was used. S. brasiliensis and S. globosa, a highly virulent and a non-virulent isolates, respectively were used as external controls. Exoantigen profiles showed different secreted molecules; the 46- and 60-kDa molecules were commonly secreted by all three species. The S. schenckii s. str. isolates could be classified as non-virulent or presenting low, medium or high virulence, based on survival times after infection and recovery of viable fungi. The humoral response profiles of mice infected with S. schenckii s. str., S. globosa and S. brasiliensis were heterogeneous; five virulent isolates (S. schenckii s. str., n = 4 and S. brasiliensis, n = 1) had in common the recognition of the 60-kDa molecule by their respective antisera, suggesting that this antigen may be involved in virulence. Furthermore, the 110-kDa molecule was secreted and recognized by antisera from four virulent isolates (S. schenckii s. str., n = 3 and S. brasiliensis, n = 1), so there is a possibility that this molecule is also related to virulence. Our findings reveal different degrees of virulence in S. schenckii s. str. isolates and suggest the correlation of protein secretion and immunogenicity with virulence of S. schenckii complex. These findings provide new insights into the pathogenesis of S. schenckii s. str. and improve the knowledge about immunogenicity and protein profiles in S. schenckii complex.

          Related collections

          Author and article information

          Comments

          Comment on this article