34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Memory Consolidation Is Linked to Spindle-Mediated Information Processing during Sleep

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          How are brief encounters transformed into lasting memories? Previous research has established the role of non-rapid eye movement (NREM) sleep, along with its electrophysiological signatures of slow oscillations (SOs) and spindles, for memory consolidation [ 1, 2, 3, 4]. In related work, experimental manipulations have demonstrated that NREM sleep provides a window of opportunity to selectively strengthen particular memory traces via the delivery of auditory cues [ 5, 6, 7, 8, 9, 10], a procedure known as targeted memory reactivation (TMR). It has remained unclear, however, whether TMR triggers the brain’s endogenous consolidation mechanisms (linked to SOs and/or spindles) and whether those mechanisms in turn mediate effective processing of mnemonic information. We devised a novel paradigm in which associative memories (adjective-object and adjective-scene pairs) were selectively cued during a post-learning nap, successfully stabilizing next-day retention relative to non-cued memories. First, we found that, compared to novel control adjectives, memory cues evoked an increase in fast spindles. Critically, during the time window of cue-induced spindle activity, the memory category linked to the verbal cue (object or scene) could be reliably decoded, with the fidelity of this decoding predicting the behavioral consolidation benefits of TMR. These results provide correlative evidence for an information processing role of sleep spindles in service of memory consolidation.

          Highlights

          • We cued memory reactivation in sleep to investigate the functional role of spindles

          • Memory cueing bolstered retrieval performance the following day

          • Relative to control stimuli, memory cues evoked a surge in fast spindle activity

          • Memory content could be reliably decoded during this spindle increase

          Abstract

          Sleep spindles play a crucial role in memory consolidation, but the underlying mechanisms are not well understood. Using an auditory memory-cueing technique and EEG analysis in humans, Cairney et al. show that sleep spindles mediate the informational content of reactivated memory traces in service of offline mnemonic processing.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.

          Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            System consolidation of memory during sleep

            Over the past two decades, research has accumulated compelling evidence that sleep supports the formation of long-term memory. The standard two-stage memory model that has been originally elaborated for declarative memory assumes that new memories are transiently encoded into a temporary store (represented by the hippocampus in the declarative memory system) before they are gradually transferred into a long-term store (mainly represented by the neocortex), or are forgotten. Based on this model, we propose that sleep, as an offline mode of brain processing, serves the ‘active system consolidation’ of memory, i.e. the process in which newly encoded memory representations become redistributed to other neuron networks serving as long-term store. System consolidation takes place during slow-wave sleep (SWS) rather than rapid eye movement (REM) sleep. The concept of active system consolidation during sleep implicates that (a) memories are reactivated during sleep to be consolidated, (b) the consolidation process during sleep is selective inasmuch as it does not enhance every memory, and (c) memories, when transferred to the long-term store undergo qualitative changes. Experimental evidence for these three central implications is provided: It has been shown that reactivation of memories during SWS plays a causal role for consolidation, that sleep and specifically SWS consolidates preferentially memories with relevance for future plans, and that sleep produces qualitative changes in memory representations such that the extraction of explicit and conscious knowledge from implicitly learned materials is facilitated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics.

              During slow wave sleep (SWS), traces of neuronal activity patterns from preceding behavior can be observed in rat hippocampus and neocortex. The spontaneous reactivation of these patterns is manifested as the reinstatement of the distribution of pairwise firing-rate correlations within a population of simultaneously recorded neurons. The effects of behavioral state [quiet wakefulness, SWS, and rapid eye movement (REM)], interactions between two successive spatial experiences, and global modulation during 200 Hz electroencephalographic (EEG) "ripples" on pattern reinstatement were studied in CA1 pyramidal cell population recordings. Pairwise firing-rate correlations during often repeated experiences accounted for a significant proportion of the variance in these interactions in subsequent SWS or quiet wakefulness and, to a lesser degree, during SWS before the experience on a given day. The latter effect was absent for novel experiences, suggesting that a persistent memory trace develops with experience. Pattern reinstatement was strongest during sharp wave-ripple oscillations, suggesting that these events may reflect system convergence onto attractor states corresponding to previous experiences. When two different experiences occurred in succession, the statistically independent effects of both were evident in subsequent SWS. Thus, the patterns of neural activity reemerge spontaneously, and in an interleaved manner, and do not necessarily reflect persistence of an active memory (i.e., reverberation). Firing-rate correlations during REM sleep were not related to the preceding familiar experience, possibly as a consequence of trace decay during the intervening SWS. REM episodes also did not detectably influence the correlation structure in subsequent SWS, suggesting a lack of strengthening of memory traces during REM sleep, at least in the case of familiar experiences.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Biol
                Curr. Biol
                Current Biology
                Cell Press
                0960-9822
                1879-0445
                19 March 2018
                19 March 2018
                : 28
                : 6
                : 948-954.e4
                Affiliations
                [1 ]Department of Psychology, University of York, York, Y010 5DD, UK
                [2 ]School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
                Author notes
                []Corresponding author b.staresina@ 123456bham.ac.uk
                [3]

                Lead Contact

                Article
                S0960-9822(18)30153-2
                10.1016/j.cub.2018.01.087
                5863764
                29526594
                6e913b7a-9899-4b9d-ad42-ba470003656b
                © 2018 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 November 2017
                : 10 January 2018
                : 31 January 2018
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article