1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Temporal decline of sperm concentration: role of endocrine disruptors

      , , ,
      Endocrine
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Male infertility is a widespread disease with an etiology that is not always clear. A number of studies have reported a decrease in sperm production in the last forty years. Although the reasons are still undefined, the change in environmental conditions and the higher exposure to endocrine-disrupting chemicals (EDCs), namely bisphenol A, phthalates, polychlorinated biphenyls, polybrominated diphenyl esters, dichlorodiphenyl-dichloroethylene, pesticides, and herbicides, organophosphates, and heavy metals, starting from prenatal life may represent a possible factor justifying the temporal decline in sperm count.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004

          Background Bisphenol A (BPA) and 4-tertiary-octylphenol (tOP) are industrial chemicals used in the manufacture of polycarbonate plastics and epoxy resins (BPA) and nonionic surfactants (tOP). These products are in widespread use in the United States. Objectives We aimed to assess exposure to BPA and tOP in the U.S. general population. Methods We measured the total (free plus conjugated) urinary concentrations of BPA and tOP in 2,517 participants ≥ 6 years of age in the 2003–2004 National Health and Nutrition Examination Survey using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results BPA and tOP were detected in 92.6% and 57.4% of the persons, respectively. Least square geometric mean (LSGM) concentrations of BPA were significantly lower in Mexican Americans than in non-Hispanic blacks (p = 0.006) and non-Hispanic whites (p = 0.007); LSGM concentrations for non-Hispanic blacks and non-Hispanic whites were not statistically different (p = 0.21). Females had statistically higher BPA LSGM concentrations than males (p = 0.043). Children had higher concentrations than adolescents (p $45,000/year). Conclusions Urine concentrations of total BPA differed by race/ethnicity, age, sex, and household income. These first U.S. population representative concentration data for urinary BPA and tOP should help guide public health research priorities, including studies of exposure pathways, potential health effects, and risk assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

            The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A unique view on male infertility around the globe

              Background Infertility affects an estimated 15% of couples globally, amounting to 48.5 million couples. Males are found to be solely responsible for 20-30% of infertility cases and contribute to 50% of cases overall. However, this number does not accurately represent all regions of the world. Indeed, on a global level, there is a lack of accurate statistics on rates of male infertility. Our report examines major regions of the world and reports rates of male infertility based on data on female infertility. Methods Our search consisted of systematic reviews, meta-analyses, and population-based studies by searching the terms “epidemiology, male infertility, and prevalence.” We identified 16 articles for detailed study. We typically used the assumption that 50% of all cases of infertility are due to female factors alone, 20-30% are due to male factors alone, and the remaining 20-30% are due to a combination of male and female factors. Therefore, in regions of the world where male factor or rates of male infertility were not reported, we used this assumption to calculate general rates of male factor infertility. Results Our calculated data showed that the distribution of infertility due to male factor ranged from 20% to 70% and that the percentage of infertile men ranged from 2·5% to 12%. Infertility rates were highest in Africa and Central/Eastern Europe. Additionally, according to a variety of sources, rates of male infertility in North America, Australia, and Central and Eastern Europe varied from 4 5-6%, 9%, and 8-12%, respectively. Conclusion This study demonstrates a novel and unique way to calculate the distribution of male infertility around the world. According to our results, at least 30 million men worldwide are infertile with the highest rates in Africa and Eastern Europe. Results indicate further research is needed regarding etiology and treatment, reduce stigma & cultural barriers, and establish a more precise calculation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Endocrine
                Endocrine
                Springer Science and Business Media LLC
                1559-0100
                January 2023
                October 04 2022
                : 79
                : 1
                : 1-16
                Article
                10.1007/s12020-022-03136-2
                36194343
                6ed60406-247d-4780-84b0-650ea6ff5d32
                © 2022

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article