25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adaptive boosting-based computational model for predicting potential miRNA-disease associations

      1 , 1 , 1
      Bioinformatics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation

          Recent studies have shown that microRNAs (miRNAs) play a critical part in several biological processes and dysregulation of miRNAs is related with numerous complex human diseases. Thus, in-depth research of miRNAs and their association with human diseases can help us to solve many problems.

          Results

          Due to the high cost of traditional experimental methods, revealing disease-related miRNAs through computational models is a more economical and efficient way. Considering the disadvantages of previous models, in this paper, we developed adaptive boosting for miRNA-disease association prediction (ABMDA) to predict potential associations between diseases and miRNAs. We balanced the positive and negative samples by performing random sampling based on k-means clustering on negative samples, whose process was quick and easy, and our model had higher efficiency and scalability for large datasets than previous methods. As a boosting technology, ABMDA was able to improve the accuracy of given learning algorithm by integrating weak classifiers that could score samples to form a strong classifier based on corresponding weights. Here, we used decision tree as our weak classifier. As a result, the area under the curve (AUC) of global and local leave-one-out cross validation reached 0.9170 and 0.8220, respectively. What is more, the mean and the standard deviation of AUCs achieved 0.9023 and 0.0016, respectively in 5-fold cross validation. Besides, in the case studies of three important human cancers, 49, 50 and 50 out of the top 50 predicted miRNAs for colon neoplasms, hepatocellular carcinoma and breast neoplasms were confirmed by the databases and experimental literatures.

          Availability and implementation

          The code and dataset of ABMDA are freely available at https://github.com/githubcode007/ABMDA.

          Supplementary information

          Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Circulating Exosomal microRNAs as Biomarkers of Colon Cancer

          Purpose Exosomal microRNAs (miRNAs) have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC). To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. Experimental Design Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA) using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. Results The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a) were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. Conclusion Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and several miRNAs are promising biomarkers for non-invasive diagnosis of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RWRMDA: predicting novel human microRNA-disease associations.

            Recently, more and more research has shown that microRNAs (miRNAs) play critical roles in the development and progression of various diseases, but it is not easy to predict potential human miRNA-disease associations from the vast amount of biological data. Computational methods for predicting potential disease-miRNA associations have gained a lot of attention based on their feasibility, guidance and effectiveness. Differing from traditional local network similarity measures, we adopted global network similarity measures and developed Random Walk with Restart for MiRNA-Disease Association (RWRMDA) to infer potential miRNA-disease interactions by implementing random walk on the miRNA-miRNA functional similarity network. We tested RWRMDA on 1616 known miRNA-disease associations based on leave-one-out cross-validation, and achieved an area under the ROC curve of 86.17%, which significantly improves previous methods. The method was also applied to three cancers for accuracy evaluation. As a result, 98% (Breast cancer), 74% (Colon cancer), and 88% (Lung cancer) of top 50 predicted miRNAs are confirmed by published experiments. These results suggest that RWRMDA will represent an important bioinformatics resource in biomedical research of both miRNAs and diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              WBSMDA: Within and Between Score for MiRNA-Disease Association prediction

              Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various heterogeneous biological datasets is of great significance to the biomedical research. Computational methods could obtain potential miRNA-disease associations in a short time, which significantly reduce the experimental time and cost. Considering the limitations in previous computational methods, we developed the model of Within and Between Score for MiRNA-Disease Association prediction (WBSMDA) to predict potential miRNAs associated with various complex diseases. WBSMDA could be applied to the diseases without any known related miRNAs. The AUC of 0.8031 based on Leave-one-out cross validation has demonstrated its reliable performance. WBSMDA was further applied to Colon Neoplasms, Prostate Neoplasms, and Lymphoma for the identification of their potential related miRNAs. As a result, 90%, 84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction list for these three diseases have been confirmed by recent experimental literatures, respectively. It is anticipated that WBSMDA would be a useful resource for potential miRNA-disease association identification.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Oxford University Press (OUP)
                1367-4803
                1460-2059
                November 15 2019
                November 01 2019
                April 30 2019
                November 15 2019
                November 01 2019
                April 30 2019
                : 35
                : 22
                : 4730-4738
                Affiliations
                [1 ]School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
                Article
                10.1093/bioinformatics/btz297
                31038664
                6f147985-f694-4a7a-8d15-1eca088fdaca
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article